Skip to main content

Agrobacterium Tumefaciens-Mediated Genetic Transformation in Cucumber

  • Chapter
  • First Online:
The Cucumber Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Genetic transformation is a versatile platform that is playing increasingly important roles in functional genomics studies and crop improvement. Cucumber (Cucumis sativus L.) is an economically important vegetable crop, and a model of choice to understand several biological processes. Although many genetic transformation studies have been carried out in the last four decades, the transformation efficiency and reproducibility of cucumber transformation remain low limiting its widespread and routine use. In this chapter, we reviewed the work in cucumber on Agrobacterium tumefaciens-mediated genetic transformation, and discussed factors affecting its efficiency in each step including genotypes, explant types, the time, temperature and bacterial concentration for co-cultivation, as well as growth regulators and selective agents for transgenic plant regeneration. We emphasized the importance to develop an efficient, reliable and reproducible cucumber genetic transformation system through collaborative and community efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasaka-Kennedy Y, Tomita K-o, Ezura H (2004) Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in melon (Cucumis melo L.). Plant Sci 166:763–769

    Google Scholar 

  • Barrell PJ, Conner AJ (2006) Minimal T-DNA vectors suitable for agricultural deployment of transgenic plants. Biotechniques 41:708–710

    Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Google Scholar 

  • Bevan MW, Chilton M-D (1982) T-DNA of the Agrobacterium Ti and Ri plasmids. Ann Rev Genet 16:357–384

    Google Scholar 

  • Bourdenx B, Bernard A, Domergue F et al (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156:29–45

    Google Scholar 

  • Bulgakov VP, Kiselev KV, Yakovlev KV et al (2006) Agrobacterium-mediated transformation of sea urchin embryos. Biotechnol J 1:454–461

    Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A, et al. (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206-3214

    Google Scholar 

  • Bundock P, van Attikum H, den Dulk-Ras A, et al. (2002) Insertional mutagenesis in yeasts using T-DNA from Agrobacterium tumefaciens. Yeast 19:529-536

    Google Scholar 

  • Cade RM, Wehner TC, Blazich FA (1990) Effect of explant age and growth regulator concentration on adventitious shoot formation from cucumber cotyledonary tissue. Cucurbit Genet Cooperative Rep 13:14–17

    Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D et al (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153

    Google Scholar 

  • Charles L. A, Jyoti R. R (2001) A novel Agrobacterium-mediated plant transformation method. Int. Patent Publ. WOO1/09302 A2. 2001

    Google Scholar 

  • Charles TC, Jin S, Nester EW (1992) Two-component sensory transduction systems in phytobacteria. Annu Rev Phytopathol 30:463–484

    Google Scholar 

  • Chee PP (1990a) High frequency of somatic embryogenesis and recover of fertile cucumber plants. HortScience 25:792–793

    Google Scholar 

  • Chee PP (1990b) Transformation of Cucumis sativus tissue by Agrobacterium tumefaciens and the regeneration of transformed plants. Plant Cell Rep 9:245–248

    Google Scholar 

  • Chee PP, Slightom JL (1992) Transformation of cucumber tissues by microprojectile bombardment: identification of plants containing functional and non-functional transferred genes. Gene 118:255–260

    Google Scholar 

  • Cheng J, Wang Z, Yao F et al (2015) Down-regulating CsHT1, a cucumber pollen-specific hexose transporter, inhibits pollen germination, tube growth, and seed development. Plant Physiol 168:635–647

    Google Scholar 

  • Cheng M, Fry JE, Pang S et al (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    Google Scholar 

  • Cheng M, Hu T, Layton J et al (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. Vitro Cellular Dev Biol Plant 39:595–604

    Google Scholar 

  • Chi G-L, Pua E-C (1989) Ethylene inhibitors enhanced de novo shoot regeneration from cotyledons of Brassica campestris ssp. chinensis (Chinese cabbage) in vitro. Plant Sci 64:243–250

    Google Scholar 

  • Chi G-L, Pua E-C, Goh C-J (1991) Role of ethylene on de novo shoot regeneration from cotyledonary explants of Brassica campestris ssp. pekinensis (Lour) Olsson in Vitro. Plant Physiol 96:178–183

    Google Scholar 

  • Chilton M-D, Currier TC, Farrand SK et al (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage dna not detected in crown gall tumors. Proc Natl Acad Sci USA 71:3672–3676

    Google Scholar 

  • Colijn-Hooymans CM, Bouwer R, Dons JJM (1988) Plant regeneration from cucumber protoplasts. Current Plant Science and Biotechnology in Agriculture, 12: 147–150

    Google Scholar 

  • Colijn-Hooymans CM, Hakkert JC, Jansen J et al (1994) Competence for regeneration of cucumber cotyledons is restricted to specific developmental stages. Plant Cell, Tissue Organ Cult 39:211–217

    Google Scholar 

  • Demirer G, Landry M (2017) Delivering genes to plants. Chem Eng Prog 113:40–45

    Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Google Scholar 

  • Estopà M, Marfà V, Melé E et al (2001) Study of different antibiotic combinations for use in the elimination of Agrobacterium with kanamycin selection in carnation. Plant Cell, Tissue Organ Cult 65:211–220

    Google Scholar 

  • Faisal SM, Haque MS, Nasiruddin KM (2015) Combined effect of explant, inoculation time and co-cultivation period on Agrobacterium-mediated genetic transformation in cucumber (Var. Shital). American J Biology and Life Sci 3: 199–20

    Google Scholar 

  • Fan J, Wang H, Li X et al (2019) Down-regulating cucumber sucrose synthase 4 (CsSUS4) suppresses the growth and development of flowers and fruits. Plant Cell Physiol 60:752–764

    Google Scholar 

  • Finkelstein R, Estelle M, Martinez-Zapater J, et al. (1988) Arabidopsis as a Tool for the identification of genes involved in plant development, plant gene research. In: Verma DPS, Deberg RB (eds) Plant Gene Research. Springer, New York, pp 7–25

    Google Scholar 

  • Fullner KJ, Nester EW (1996) Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol 178:1498–1504

    Google Scholar 

  • Gal-On A, Wolf D, Antignus Y et al (2005) Transgenic cucumbers harboring the 54-kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect non-transgenic scions from soil infection. Transgenic Res 14:81–93

    Google Scholar 

  • Gallego ME, Bleuyard J-Y, Daoudal-Cotterell S et al (2003) Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35:557–565

    Google Scholar 

  • Galperin M, Patlis L, Ovadia A et al (2003) A melon genotype with superior competence for regeneration and transformation. Plant Breeding 122:66–69

    Google Scholar 

  • Ganapathi A, Perl-Treves R (2000) Agrobacterium-mediated transformation in Cucumis Sativus via direct organogenesis. Acta Hort 510:405–407

    Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the Biology behind the “Gene-Jockeying” Tool. Microbiol Mol Biol Rev 67:16–37

    Google Scholar 

  • He Z, Chen L, Yao W et al (2008) Recent progress in cucumber (Cucumis sativus) transformation. Transgenic Plant J 2:39–44

    Google Scholar 

  • He Z, Duan Z, Liang W et al (2006) Mannose selection system used for cucumber transformation. Plant Cell Rep 25:953–958

    Google Scholar 

  • Heide O (1968) Stimulation of adventitious bud formation in begonia leaves by abscisic acid. Nature 219:960–961

    Google Scholar 

  • Hu B, Li D, Liu X et al (2017) Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 System. Mol Plant 10:1575–1578

    Google Scholar 

  • Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G et al (2018) CRISPR for crop improvement: an update Review. Front Plant Sci 9:985–985

    Google Scholar 

  • Jang HA, Utomo SD, Kwon SY et al (2016) Production of transgenic cucumber expressing phytoene synthase-2A carotene desaturase gene. Journal of Plant Biotechnology 43:341–346

    Google Scholar 

  • Jin S, Song YN, Deng WY et al (1993) The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J Bacteriol 175:6830–6835

    Google Scholar 

  • Keshavareddy G, Kumar ARV, S. Ramu V (2018) Methods of plant transformation- A review. International Journal of Current Microbiology and Applied Sciences 7:2656-2668

    Google Scholar 

  • Kim S-G, Chang J-R, Cha HC et al (1988) Callus growth and plant regeneration in diverse cultivars of cucumber (Cucumis sativus L.). Plant Cell, Tissue Organ Cult 12:67–74

    Google Scholar 

  • Koncz C, Németh K, Rédei GP et al (1992) T-DNA insertional mutagenesis in Arabidopsis. Plant Mol Biol 20:963–976

    Google Scholar 

  • Kose E, Koç NK (2003) Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) and plant regeneration. Biotechnol Biotechnol Equip 17:51–62

    Google Scholar 

  • Lü J, Sui X, Ma S et al (2017) Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance. Plant Mol Biol 95:1–15

    Google Scholar 

  • Lee L-Y, Gelvin SB (2008) T-DNA binary vectors and systems. Plant Physiol 146:325–332

    Google Scholar 

  • Li M-Y, Cao Z-Y, Shen W-B et al (2011) Molecular cloning and expression of a cucumber (Cucumis sativus L.) heme oxygenase-1 gene, CsHO1, which is involved in adventitious root formation. Gene 486:47–55

    Google Scholar 

  • Li X, Du J, Guo J et al (2018) The functions of cucumber sucrose phosphate synthases 4 (CsSPS4) in carbon metabolism and transport in sucrose- and stachyose-transporting plants. J Plant Physiol 228:150–157

    Google Scholar 

  • Liu L, Duan L, Zhang J et al (2010) Cucumber (Cucumis sativus L.) over-expressing cold-induced transcriptome regulator ICE1 exhibits changed morphological characters and enhances chilling tolerance. Sci Hortic 124:29–33

    Google Scholar 

  • Liu X, Hao N, Li H et al (2019) PINOID is required for lateral organ morphogenesis and ovule development in cucumber. J Exp Bot 70:5715–5730

    Google Scholar 

  • Liu X, Ning K, Che G et al (2018) CsSPL functions as an adaptor between HD-ZIP III and CsWUS transcription factors regulating anther and ovule development in Cucumis sativus (cucumber). Plant J 94:535–547

    Google Scholar 

  • Li Q, Li H, Huang W, Xu Y, Zhou Q, Wang S, Ruan J, Huang S, Zhang Z (2019) A chromosome-scale genome assembly of cucumber (Cucumis sativus L.). GigaScience 8:giz072

    Google Scholar 

  • Liu Y-G, Mitsukawa N, Oosumi T et al (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Google Scholar 

  • Liu Y-G, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Google Scholar 

  • Lou H, Kako S (1994) Somatic embryogenesis and plant regeneration in cucumber. HortScience 29:906–909

    Google Scholar 

  • Ma S, Sun L, Sui X et al (2019) Phloem loading in cucumber: combined symplastic and apoplastic strategies. Plant J 98:391–404

    Google Scholar 

  • Maciejewska-Potapczykowa W, Rennert A, Milewska E (1972) Callus induction and growth of tissue cultures derived from cucumber plant organs of four different sex types. Polish Botanical Society 41:329–339

    Google Scholar 

  • Miao M-M, Xu R, Zheng L-J et al (2009) High-efficiency Agrobacterium tumefaciens-mediated transformation of cucumber (Cucumis sativus L.) using stem nodes as explants. J Hortic Sci Biotechnol 84:199–203

    Google Scholar 

  • Mohiuddin AKM, Abdullah ZC, Chowdhury MKU et al (2005) Enhancement of adventitious shoot regeneration in Cucumis sativus L. using AgNO3. Plant Tissue Cult 15:15–23

    Google Scholar 

  • Mohiuddin AKM, Chowdhury MKU, Abdullah ZC et al (1997) Influence of silver nitrate (ethylene inhibitor) on cucumber in vitro shoot regeneration. Plant Cell, Tissue Organ Cult 51:75–78

    Google Scholar 

  • Mullins ED, Chen X, Romaine P et al (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180

    Google Scholar 

  • Mysore KS, Nam J, Gelvin SB (2000) An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci 97:948–953

    Google Scholar 

  • Nanasato Y, Konagaya K-i, Okuzaki A et al (2013) Improvement of Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks. Plant Biotechnol Rep 7:267–276

    Google Scholar 

  • Nishibayashi S, Kaneko H, Hayakawa T (1996) Transformation of cucumber (Cucumis sativus L.) plants using Agrobacterium tumefaciens and regeneration from hypocotyl explants. Plant Cell Rep 15:809–814

    Google Scholar 

  • Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Molecular Biol 1:12–20

    Google Scholar 

  • Osipowski P, Pawełkowicz M, Wojcieszek M et al (2020) A high-quality cucumber genome assembly enhances computational comparative genomics. Mol Genet Genomics 295:177–193

    Google Scholar 

  • Pan YP, Wang YH, McGregor C, Liu S, Luan FS, Gao ML, Weng Y (2020) Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theor Appl Genet 133:1–21

    Google Scholar 

  • Pan YP, Wen CL, Han YH et al (2020) QTL for horticulturally important traits associated with pleiotropic andromonoecy and carpel number loci, and a paracentric inversion in cucumber. Theor Appl Genet 133:2271–2290

    Google Scholar 

  • Prem Anand R, Rafael P-T (2005) Improved cucumber transformation by a modified explant dissection and selection protocol. HortScience HortSci 40:431–435

    Google Scholar 

  • Prewein C, Vagner M, Wilhelm E (2004) Changes in water status and proline and abscisic acid concentrations in developing somatic embryos of pedunculate oak (Quercus robur) during maturation and germination. Tree Physiol 24:1251–1257

    Google Scholar 

  • Raharjo SHT, Hernandez MO, Zhang YY et al (1996) Transformation of pickling cucumber with chitinase-encoding genes using Agrobacterium tumefaciens. Plant Cell Rep 15:591–596

    Google Scholar 

  • Rajasekaran K, Mullins MG, Nair Y (1983) Flower formation in vitro by hypocotyl explants of cucumber (Cucumis sativus L.). Ann Bot 52:417–420

    Google Scholar 

  • Rajagopalan PA, Perl-Treves R (2005) Improved cucumber transformation by a modified explant dissection and selection protocol. HortScience 40:431–435

    Google Scholar 

  • Rui Y, Zhang P, Zhang Y et al (2015) Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate. Environ Pollut 198:8–14

    Google Scholar 

  • Sarmento GG, Alpert K, Tang FA et al (1992) Factors influencing Agrobacterium tumefaciens mediated transformation and expression of kanamycin resistance in pickling cucumber. Plant Cell, Tissue Organ Cult 31:185–193

    Google Scholar 

  • Schulze J, Balko C, Zellner B et al (1995) Biolistic transformation of cucumber using embryogenic suspension cultures: long-term expression of reporter genes. Plant Sci 112:197–206

    Google Scholar 

  • Selvaraj N, Kasthurirengan S, Vasudevan A et al (2010) Evaluation of green fluorescent protein as a reporter gene and phosphinothricin as the selective agent for achieving a higher recovery of transformants in cucumber (Cucumis sativus L. cv. Poinsett76) via Agrobacterium tumefaciens. Vitro Cellular Dev Biol Plant 46:329–337

    Google Scholar 

  • Selvaraj N, Vasudevan A, Manickavasagam M et al (2007) High frequency shoot regeneration from cotyledon explants of cucumber via organogenesis. Sci Hortic 112:2–8

    Google Scholar 

  • Seo S-H, Bai D-G, Park H-Y (2000) High frequency shoot regeneration from leaf explants of cucumber. J Plant Biotechnol 2:51–54

    Google Scholar 

  • Shen J, Zhang Y, Ge D et al (2019) CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. Proc Natl Acad Sci 116:17105–17114

    Google Scholar 

  • Simpson RB, Spielmann A, Margossian L et al (1986) A disarmed binary vector from Agrobacterium tumefaciens functions in Agrobacterium rhizogenes. Plant Mol Biol 6:403–415

    Google Scholar 

  • Singh A, Jani K, Sagervanshi A et al (2014) High-frequency regeneration by abscisic acid (ABA) from petiole callus of Jatropha curcas. Vitro Cellular Dev Biol Plant 50:638–645

    Google Scholar 

  • Smith HO, Danner DB, Deich RA (1981) Genetic transformation. Annu Rev Biochem 50:41–68

    Google Scholar 

  • Sonti RV, Chiurazzi M, Wong D et al (1995) Arabidopsis mutants deficient in T-DNA integration. Proc Natl Acad Sci 92:11786–11790

    Google Scholar 

  • Sui X-l, Meng F-z, Wang H-y et al (2012) Molecular cloning, characteristics and low temperature response of raffinose synthase gene in Cucumis sativus L. J Plant Physiol 169:1883–1891

    Google Scholar 

  • Sui X, Nie J, Li X et al (2018) Transcriptomic and functional analysis of cucumber (Cucumis sativus L.) fruit phloem during early development. Plant J 96:982–996

    Google Scholar 

  • Sui X, Shan N, Hu L et al (2017) The complex character of photosynthesis in cucumber fruit. J Exp Bot 68:1625–1637

    Google Scholar 

  • Sun J, Sui X, Wang S et al (2014) The response of rbcL, rbcS and rca genes in cucumber (Cucumis sativus L.) to growth and induction light intensity. Acta Physiol Plant 36:2779–2791

    Google Scholar 

  • Sun L, Sui X, Lucas WJ et al (2019) Down-regulation of the sucrose transporter CsSUT1 causes male sterility by altering carbohydrate supply. Plant Physiol 180:986–997

    Google Scholar 

  • Sun Y, Luo W, Li Z et al (2017) Establishment of a high-efficiency genetic transformation system of cucumber (cucumis sativus) using csexpansin 10 (CsEXP10) Gene. Int J Agric Biol 19:545–530

    Google Scholar 

  • Sunilkumar G, Rathore KS (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breeding 8:37–52

    Google Scholar 

  • Sureshkumar P, Selvaraj N, Ganapathi A et al (2005) Assessment of factors influencing Agrobacterium mediated transformation in cucumber (Cucumis sativus L). J Plant Biotechnol 7:225–231

    Google Scholar 

  • Tabei Y, Kitade S, Nishizawa Y et al (1998) Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Rep 17:159–164

    Google Scholar 

  • Torrizo LB, Zapata FJ (1986) Anther culture in rice: IV. The effect of abscisic acid on plant regeneration. Plant Cell Rep 5:136–139

    Google Scholar 

  • Trulson AJ, Shahin EA (1986) In vitro plant regeneration in the genus Cucumis. Plant Sci 47:35–43

    Google Scholar 

  • Trulson AJ, Simpson RB, Shahin EA (1986) Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes. Theor Appl Genet 73:11–15

    Google Scholar 

  • Turk SCJ, Melchers LS, den Dulk-Ras H, et al. (1991) Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the VirA sensor protein. Plant Molecular Biol 16:1051-1059

    Google Scholar 

  • van der Mark F, Bergervoet, JHW, Custers JBM (1989) Transformation of cucumber with Agrobacterium rhizogenes. Cucurbit Gnenetics Cooperative Reports 12:35-36

    Google Scholar 

  • Vasudevan A, Ganapathi A, Selvaraj N et al (2002) Agrobacterium-mediated transformation in cucumber (Cucumis sativus L.). Cucurbit Genet Cooperative Rep 25:14–16

    Google Scholar 

  • Vasudevan A, Selvaraj N, Ganapathi A et al (2007) Agrobacterium-mediated genetic transformation in cucumber (cucumis sativus L.). Am J Biotechnol Biochem 3:24–32

    Google Scholar 

  • Vengadesan G, Anand RP, Selvaraj N et al (2005) Transfer and expression of nptII and bar genes in cucumber (Cucumis satavus L.). In Vitro Cellular & Developmental Biology - Plant 41:17–21

    Google Scholar 

  • Wang H, Sui X, Guo J et al (2014) Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. Plant, Cell Environ 37:795–810

    Google Scholar 

  • Wang J, Zhang S, Wang X et al (2013) Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) using a sense mitogen-activated protein kinase gene (CsNMAPK). Plant Cell, Tissue Organ Cult 113:269–277

    Google Scholar 

  • Wang K, Herrera-Estrella L, Van Montagu M et al (1984) Right 25 by terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38:455–462

    Google Scholar 

  • Wang S-L, Ku SS, Ye X-G et al (2015) Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.). J Integr Agric 14:469–482

    Google Scholar 

  • Wang W, Zhang Y, Xu C et al (2015) Cucumber ECERIFERUM1 (CsCER1), which influences the cuticle properties and drought tolerance of cucumber, plays a key role in VLC alkanes biosynthesis. Plant Mol Biol 87:219–233

    Google Scholar 

  • Wang Y, Zhou Q, Zhu G et al (2018) Genetic analysis and identification of a candidate gene associated with in vitro regeneration ability of cucumber. Theor Appl Genet 131:2663–2675

    Google Scholar 

  • Wang YH, Bo KL, Gu XF, Pan JS, Li YH, Chen JF, Wen CL, Ren ZH, Ren HZ, Chen XH, Grumet G, Weng Y (2019) Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Hort Res 7:3

    Google Scholar 

  • Wen C, Zhao W, Liu W, et al. (2019) CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development 146:dev180166

    Google Scholar 

  • Wu L, Di D-W, Zhang D et al (2015) Frequent problems and their resolutions by using thermal asymmetric interlaced PCR (TAIL-PCR) to clone genes in Arabidopsis T-DNA tagged mutants. Biotechnol Biotechnol Equip 29:260–267

    Google Scholar 

  • Xu X, Ji J, Xu Q et al (2018) The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation. Plant J 93:917–930

    Google Scholar 

  • Yang L, Koo D-H, Li Y et al (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J 71:895–906

    Google Scholar 

  • Yang L, Liu H, Zhao J et al (2018) LITTLELEAF (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. Plant J 95:834–847

    Google Scholar 

  • Yang X, Zhang W, He H et al (2014) Tuberculate fruit gene Tu encodes a C2H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.). Plant J 78:1034–1046

    Google Scholar 

  • Yin Z, Bartoszewski G, Szwacka M et al (2005) Cucumber transformation methods – the review. Biotechnologia 1:95–113

    Google Scholar 

  • Yin Z, Pląder W, Wiśniewska A et al (2005) Transgenic cucumber – a current state. Folia Horticulturae 17:73–90

    Google Scholar 

  • Zhang W, Subbarao S, Addae P et al (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107:1157–1168

    Google Scholar 

  • Zhang Z, Xin Li SM, Shan N, et al. (2017) A protocol for Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) from cotyledon explants. Protoc Exch. https://doi.org/10.1038/protex.2017.107

  • Zhao J, Jiang L, Che G et al (2019) A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. Plant Cell 31:1289–1307

    Google Scholar 

  • Zhao W, Chen Z, Liu X et al (2018) CsLFY is required for shoot meristem maintenance via interaction with WUSCHEL in cucumber (Cucumis sativus). New Phytol 218:344–356

    Google Scholar 

  • Zhao Z-y, Gu W, Cai T et al (2002) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breeding 8:323–333

    Google Scholar 

  • Ziv M, Gadasi G (1986) Enhanced embryogenesis and plant regeneration from cucumber (Cucumis sativus L.) callus by activated charcoal in solid/liquid double-layer cultures. Plant Sci 47:115–122

    Google Scholar 

Download references

Acknowledgements

This wok was supported by the AFRI Competitive Grants under award numbers 2015-51181-24285 and 2017-67013-26195 from the USDS-NIFA. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqun Weng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, H., Weng, Y. (2022). Agrobacterium Tumefaciens-Mediated Genetic Transformation in Cucumber. In: Pandey, S., Weng, Y., Behera, T.K., Bo, K. (eds) The Cucumber Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-88647-9_5

Download citation

Publish with us

Policies and ethics