Skip to main content

Cyto-Molecular Genetics of the Interspecific Hybridization in Cucumber

  • Chapter
  • First Online:
The Cucumber Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Cucumber, Cucumis sativus L. (CC, 2n = 2x = 14), is a valuable vegetable crop widely cultivated and consumed around the world. However, due to the narrow genetic base and lack of resistant genes, cucumber breeding has been hindered, especially in resistance breeding. Cultivated cucumber suffered from a range of devastating diseases, like downy mildew, powdery mildew, root-knot nematode, etc. Therefore, transferring specific traits from the wild relatives through interspecific hybridization has been highlighted for its importance by the breeders for a long time. Among more than 50 wild relatives, C. hystrix (HH, 2n = 2x = 24) is the only wild Cucumis species grouped into the same subgenus together with C. sativus, while all others are classified into Melo subgenus. Also, bearing multiple disease-resistant characteristics, C. hystrix is the only known wild species cross-compatible with C. sativus in this genus. The one and only successful synthetic allotetraploid C. ×hytivus J. F. Chen & J. H. Kirkbr (HHCC, 2n = 4x = 38) was obtained via an interspecific hybridization between C. hystrix and C. sativus. It has been reported that both genetic and epigenetic reprogramming in this C.  ×hytivus, which might be the reason for the novel phenotypic variation, such as delay maturation. Hybridization and allopolyploidization frequently bring a ‘genomic shock’ that causes rapid genetic and epigenetic changes, due to the merger of two or more divergent genomes, which leads to many problems, like the meiosis abnormality, extensive abnormal chromosome pairing, imbalanced chromosome segregation, and karyotype variations. Still, according to the clear genetic background and small genome size with whole-genome released recently, the Cucumis allotetraploid could serve as an excellent system for studying immediate consequences following allopolyploidization. Cyto-molecular genetics and genomic information of this hybrid and its allotetraploid could provide a novel insight into the establishment of allopolyploids with different chromosome bases, as well as provide effective ways to create new species and materials, which can be employed for cucumber and melon improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayyangar KR (1967) Taxomomy of Cucurbitaceae. Bull Natl Inst Sci India 34:380–396

    Google Scholar 

  • Bhaduri PN, and Bose PC (1947) Cytogenetical investigations in some common cucurbits, with special reference to fragmentation of chromosomes as physical basis of speciation. J Genet 48, 237–25

    Google Scholar 

  • Bowley SR, Taylor NL (1987) Introgressive hybridization. In: Christie BR (ed) CRC handbook of plant science in agriculture, vol 1. CRC. Boca Raton, FL, USA, pp 23–59

    Google Scholar 

  • Chen JF, Staub JE (1997) Attempts at colchicine doubling of an interspecific hybrid of Cucumis sativus L.  ×C. hystrix Chakr. Cucurbit Genet Coop Rep 20:24–26

    Google Scholar 

  • Chen JF, Adelberg JW, Staub JE, Skorupska HT, Rhodes BB (1998) A new synthetic amphidiploid Cucumis from a C. sativus  ×C. hystrix F1 interspecific hybrid. In: McCreight J (ed) Cucurbitaceae’98 – Evaluation and enhancement of cucurbit germplasm. ASHS, Alexandria, VA USA, pp 336–339

    Google Scholar 

  • Chen JF, Kirkbride J (2000) A new synthetic species Cucumis (Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia 52:315–319

    Article  Google Scholar 

  • Chen JF, Lewis S (2000) New source of nematode resistance was identified in Cucumis. Cucurbit Genet Coop Rep 23:32–35

    CAS  Google Scholar 

  • Chen JF, Staub J, Adelberg J, Lewis S, Kunkle B (2002) Synthesis and preliminary characterization of a new species (amphidiploid) in Cucumis. Euphytica 123(3):315–322

    Article  Google Scholar 

  • Chen JF and Zhou XH (2011) Wild crop relatives: genomic and breeding resources vegetables. In: Kole C (Eds) Heidelberg, Germany, Springer, GBP 135.00 ISBN 978-3-642-20449-4

    Google Scholar 

  • Chen LZ, Lou QF, Wolukau JN, Chen JF, Luo XD (2005) Preliminary studies on early genomic changes of a synthetic allotetraploid in Cucumis. Acta Horticulturae Sinica 6:1105–1107

    Google Scholar 

  • Chen LZ Chen JF, Lou QF, Yang YG, Zhuang Y (2006a) Preliminary studies on sequence elimination of reciprocal allotetraploids from Cucumis hystrix and C. sativus. Acta Phytotaxonomica Sinica 44 (5): 481–487

    Google Scholar 

  • Chen LZ, Lou QF, Zhang XQ, Ma YF, Chen JF (2006b) Cytogenetic characteristics and pollen fertility of the interspecific hybrid F1 and the amphidiploid from Cucumis hystrix Chakr. ×C. sativus L. J Nanjing Agric Univ 29(4):38–42

    Google Scholar 

  • Cheng CY, Wang X, Liu XJ, Yang SQ, Yu XQ, Qian CT, Lou QF, Li J, Chen JF (2019) Candidate genes underlying the quantitative trait loci for root-knot nematode resistance in Cucumis-hystrix introgression line based on population sequencing. J Plant Res 132(6):813–823

    Article  CAS  Google Scholar 

  • Chester M, Gallagher JP, Symonds VV, Cruz da Silva AV, Mavrodiev EV, Leitch AR, Soltis PS, Soltis DE (2012) Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci USA 109:1176–1181

    Article  CAS  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, Hénaff E, Câmara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutiérrez S, Blanca J, Cañizares J, Ziarsolo P, Gonzalez-Ibeas D, Luis Rodríguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Melé M, Yang LM, Weng YQ, Navarro A, Marques-Bonet T, Aranda A.M, Nuez F, Picó B, Gabaldón T, Roma G, Roderic Guigó, Casacuberta M.J, Arús P, and Puigdomènech P (2012) The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences USA 109(29)

    Google Scholar 

  • Garcia-Mas J, Monforte AJ, Arus P (2004) Phylogenetic relationships among Cucumis species based on the ribosomal internal transcribed spacer sequence and microsatellite markers. Plant Sys Evol 248(1–4):191–203

    CAS  Google Scholar 

  • Ghebretinsae AG, Thulin M, Barber JC (2007) Relationships of cucumbers and melons unraveled: molecular phylogenetics of Cucumis and related genera (Benincaseae, Cucurbitaceae). Am J Bot 94:1256–1266

    Article  CAS  Google Scholar 

  • Guo JY, Chen JF (2005) Genomic exchange and rearrangement and its effect on fertility of male gametophyte in Cucumis hytivus. J Wuhan Botan Res 23(2):107–110

    Google Scholar 

  • Guo JY, Chen JF, Luo XD, et al. (2005) Cytological studies on microsporogenesis and male gametophyte development of amphidiploid of Cucumis hytivus in Cucumis. Acta Bot Boreal-Occident Sin. 25(1): 0022–0026

    Google Scholar 

  • Han Y, Zhang Z, Liu C, Liu J, Huang SW, Jiang J, Jin WW (2009) Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc Natl Acad Sci USA 106:14937–14941

    Article  CAS  Google Scholar 

  • Han Y, Zhang Z, Huang S, Jin W (2011) An integrated molecular cyto-genetic map of Cucumis sativus L. chromosome. BMC Genet 12:18

    Google Scholar 

  • Han Y, Zhang T, Thammapichai P et al (2015) Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200:771–779

    Article  Google Scholar 

  • Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, Fan W, Lucas WJ, Wang XW, Xie BY, et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41(12): 1275–1281

    Google Scholar 

  • Jeffrey C (1962) Notes on Cucurbitaceae including a proposed new classification for the family. Kew Bull 15:337–371

    Article  Google Scholar 

  • Jeffrey C (1967) On the classification of Cucurbitaceae. Kew Bull 20:417–426

    Article  Google Scholar 

  • Jeffrey C (1980) A review of the Cucurbitaceae. Bot J Linn Soc 81:233–247

    Article  Google Scholar 

  • Jeffrey C (1990) Systematics of Cucurbitaceae: an overview. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Cornell University Press, Ithaca, NY, USA, pp 3–9

    Google Scholar 

  • Jia L, Lou QF, Jiang B, Wang D, Chen JF (2014) LTR retrotransposons cause expression changes of adjacent genes in early generations of the newly formed allotetraploid Cucumis hytivus. Sci Hortic 174:171–177

    Article  CAS  Google Scholar 

  • Kirkbride JH (1993) Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Parkway, Boone, NC, USA

    Google Scholar 

  • Kozhukhow SA (1930) Karyological investigations of the genus Cucumis. Bull Appl Bot Plant Breed 23, 357–366

    Google Scholar 

  • Lou LN, Wang HY, Qian CT, Liu J, Bai YL, Chen JF (2013a) Genetic mapping of gummy stem blight (Didymella bryoniae) resistance genes in Cucumis sativus-hystrix introgression lines. Euphytica 192(3):359–369

    Article  CAS  Google Scholar 

  • Lou QF, He YH, Cheng CY, Zhang ZH, Li J, Huang SW, Chen JF (2013b) Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber. PLoS One 8:e62676

    Google Scholar 

  • Lou QF, Zhang YX, He YH, Li J, Jia L, Cheng CY, Guan W, Yang SQ, Chen JF (2014) Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis. Plant J 78:169–179

    Article  CAS  Google Scholar 

  • Luo XD, Dai LF, Liu Q, Lou QF, Qian CT, Chen JF (2006) Isozyme analysis of reciprocal interspecific hybrid F1 between Cucumis sativus and its wild relative C. hystrix Acta Phytotaxonomica Sinica 44 (5): 488–493

    Google Scholar 

  • Mestiri I, Chague V, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Chalhoub B, Jahier J (2010) Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol 186:86–101

    Article  CAS  Google Scholar 

  • Nugent PE, Dukes PD (1997) Root-knot nematode resistance in Cucumis species. HortScience 5:880–881

    Article  Google Scholar 

  • Olczak-Woltman H, Marcinkowska J, Niemirowicz-Szczytt K (2011) The genetic basis of resistance to downy mildew in Cucumis spp.–latest developments and prospects. J Appl Genet 52(3): 249–255

    Google Scholar 

  • Pang X, Zhou XH, Wan HJ, Chen JF (2013) QTL mapping of downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucumis hystrix. J Phytopathology. https://doi.org/10.1111/jph.12103

  • Pangalo KJ (1950) Melons as the independent genus Melo Adans. Bot Z (moscow and Leningrad) 35:571–580

    Google Scholar 

  • Pitrat M, Chauvet M, Foury C (1999) Diversity, history, and production of cultivated cucurbits. Acta Hortic 492:21–28

    Article  Google Scholar 

  • Pląder W, Yukawa Y, Sugiura M, Malepszy S (2007) The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: its composition and comparative analysis. Cell Mol Biol Lett 2007. 12(4), 584–594

    Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci 101:18240–18245

    Article  CAS  Google Scholar 

  • Qian CT, Chen JF, Zhuang FY, Zhao F, Xu YB, Li SJ (2002) Several photosynthetic characters of the hybrid species cucumis hytivus Chen & Kirkbride under weak light condition. Plant Physiol Commun 38(04):336–338

    Google Scholar 

  • Ren Y, Zhang ZH, Liu JH, Staub J E, Han YH, Cheng ZC, Li XF, Lu JY, Miao H, Kang HX, Xie BY, Gu XF, Wang XW, Du YC, Jin WW, Huang SW (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4:e5795

    Google Scholar 

  • Renner S.S., Schaefer H., and Kocyan A (2007) Phylogenetics of Cucumis (Cucurbitaceae): cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). BMC Evol Biol 7: 58

    Google Scholar 

  • Schaefer H (2007) Cucumis (Cucurbitaceae) must include Cucumella, Dicoelospermum, Mukia, Myrmecosicyos, and Oreosyce: a recircumscription based on nuclear and plastid DNA data. Blumea 52:165–177

    Article  Google Scholar 

  • Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci USA 107:14269–14273

    Article  CAS  Google Scholar 

  • Skalická K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A (2005) Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol 166:291–303

    Google Scholar 

  • Sun JY, Zhang ZH, Zong X, Huang SW, Li ZY, Han YH (2013) A high-resolution cucumber cytogenetic map integrated with the genome assembly. BMC Genomics 14:461

    Article  CAS  Google Scholar 

  • Trivedi RN, Roy RP (1970) Cytological studies in Cucumis and Citrullus. Cytologia 35:561–569

    Google Scholar 

  • Wang YH, Bo KL, Gu XF, Pan JS, Li YH, Chen JF, Wen CL, Ren ZH, Ren HZ, Chen XH, Grumet R, Weng YQ (2020) Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. HORTIC RES 7:3

    Google Scholar 

  • Wang YZ, Zhao QZ, Qin XD, Yang SQ, Li ZA, Li J, Lou QF, Chen JF (2017a) Identification of all homoeologous chromosomes of newly synthetic allotetraploid Cucumis  ×hytivus and its wild parent reveals stable subgenome structure. Chromosoma 126:713–728

    Article  CAS  Google Scholar 

  • Wang YZ, Zhang ZT, Jia L, Li ZA, Li J, Lou QF, ChenJF (2017b) Molecular and cytogenetic analyses provide evidence of the introgression of chromosomal segments from the wild Cucumis hystrix into the cultivated cucumber through the bridge of a synthetic allotetraploid. Mol Breed 37:89–99

    Google Scholar 

  • Whitaker TW (1933) Cytological and phylogenetic studies in the cucurbitaceae. Bot Gaz 94, 780–790

    Google Scholar 

  • Xiong ZY, Pires JC (2011) Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 187:37–49

    Article  CAS  Google Scholar 

  • Xiong ZY, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci 108:7908–7913

    Article  CAS  Google Scholar 

  • Yang LM, Koo DH, Li DW, Zhang T, Jiang JM, Luan FS, Renner SS, Hénaff E, Sanseverino W, Garcia-Mas J, Casacuberta J, Senalik DA, Simon PW, Chen JF, Weng YQ (2014) Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis. Plant J 77:16–30

    Article  CAS  Google Scholar 

  • Ye DY (2011) Mechanisms of resistnce to Meloidyne incognita in sour cucumber (Cucumis hystrix Chakr.) and identification of introgression lines with resistance. Nanjing Agricultural University Docteral Thesis

    Google Scholar 

  • Yu XQ, Wang PQ, Li J, Zhao QZ, Ji CM, Zhu ZB, Zhai YF, Qin XD, Zhou JG, Yu HY, Cheng XC, Isshiki S, Jahn M, Doyle JF, Ottosen C, Bai YL, Cai QS, Cheng CY, Lou QF, Huang SW, Chen JF (2021) Whole-genome sequence of synthesized allopolyploids in Cucumis reveals insights into the genome evolution of Allopolyploidization. Adv Sci 2004222. https://doi.org/10.1002/advs.202004222

  • Zhao QZ, Wang YZ, Bi YF, Zhai YF, Yu XQ, Cheng CY, Wang PQ, Li J, Lou QF, Chen JF (2019) Oligo-painting and GISH reveal meiotic chromosome biases and increased meiotic stability in synthetic allotetraploid Cucumis ×hytivus with dysploid parental karyotypes. BMC Plant Biol 19:471T

    Article  Google Scholar 

  • Zhao X, Lu JY, Zhang Z, Hu J, Huang S, Jin W (2011) Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships. J Genet Genom 38:39–45

    Article  Google Scholar 

  • Zhang KJ, Wang X, Zhu WW, Qin XD, Xu J, Cheng CY, Lou QF, Li J, Chen JF (2018) Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co‑localized locus. Theor Appl Genet, 131:2229–2243

    Google Scholar 

  • Zhuang FY, Chen JF, Qian CT, Li SJ, Ren G, Wang ZJ (2002) Responses of seedlings of Cucumis ×hytivus and progenies to low temperature. J Nanjing Agric Univ 25(2):27–30 (in Chinese)

    Google Scholar 

  • Zhuang FY, Chen JF (2003) RAPD Analysis of cultivated cucumber, Wild Cucumis Species, interspecific hybrid and its progenies from backcrossing. Acta Horticulturae Sinica 30(1):47–50 (in Chinese)

    Google Scholar 

  • Zhuang FY, Chen JF, Staub JE, Qian CT (2008) Assessment of genetic relationships among Cucumis spp. By SSR and RAPD marker analysis. Plant Breeding 123:167–172

    Article  CAS  Google Scholar 

  • Zhuang FY, Chen JF, Qian CT, Luo XD, Lei C (2005) Cytological and molecular studies on genomic exchange and reconstitution in the synthetic allotetraploid Cucumis hytivus. Scientia Agricultura Sinica 38(3):582–588

    CAS  Google Scholar 

  • Zhuang FY, Chen JF, Wulocau J, Lou QF, Qian CT, Luo XD (2006) Introgressive hybridization between the synthetic allotetraploid in Cucumis and cultivated cucumber and assessment of the genetic variation in the progenies. Acta Horticulturae Sinica 33(2):266–327 (in Chinese)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, C., Chen, J. (2022). Cyto-Molecular Genetics of the Interspecific Hybridization in Cucumber. In: Pandey, S., Weng, Y., Behera, T.K., Bo, K. (eds) The Cucumber Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-88647-9_10

Download citation

Publish with us

Policies and ethics