Skip to main content

Constructing VeSNet: Mapping LOD Thesauri onto Princeton WordNet and Polish WordNet

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2021)

Abstract

Lexical resources are crucial in many modern applications of Natural Language Processing and Artificial Intelligence. We present VeSNet – a network of lexical resources resulting from the merge of Polish-English WordNet (PEWN) with several existing large electronic thesauri from the Linked Open Data cloud (DBpedia, Wikipedia, GeoWordNet, Agrovoc, Eurovoc, Gemet and MeSH). We describe the procedure of making the resource and depict its elementary properties, as well as, evaluate its quality. The created lexical network is characterised both by great coverage and high precision: nearly 1.3M new exactMatch links were created, including 85K to PEWN, with the estimated precision of 94%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.fao.org/agrovoc/.

  2. 2.

    https://op.europa.eu/en/web/eu-vocabularies/dataset/-/resource?uri=http://publications.europa.eu/resource/dataset/eurovoc.

  3. 3.

    https://www.eionet.europa.eu/gemet/en/about/.

  4. 4.

    https://old.datahub.io/dataset/geowordnet.

  5. 5.

    https://www.ncbi.nlm.nih.gov/mesh/.

  6. 6.

    https://wordnet.princeton.edu/, http://plwordnet.pwr.wroc.pl/wordnet/.

  7. 7.

    https://www.wikipedia.org/, https://wiki.dbpedia.org/.

  8. 8.

    Thus, we did not distinguish between them. Equaling eM and cM could be justified by the fact that “skos:exactMatch, defined as a transitive subproperty of skos:closeMatch, was intended to express a degree of similarity close enough to justify (...) propagation” [2].

  9. 9.

    That is not only the shared ones.

  10. 10.

    Including also other thesauri.

  11. 11.

    Calculated with the normality assumption and with t-Student distribution for unknown deviance, \(n=5\) observations (i.e. lexical resources).

  12. 12.

    The eM ratio measure is important, since it shows how ‘compatible’ a thesaurus is when compared to wordnets. Lower eM ratios mean more specific terms in thesauri. This might inform us on how difficult finding a proper equivalent of a thesaurus concept in a wordnet could be. On the other hand, the analysis of correlation between recall and the labelling language number leads to identical conclusions, suggesting that this could also be an important factor.

  13. 13.

    The data and our code are available at https://github.com/CLARIN-PL/vesnet.

References

  1. Bai, X., Ramos, M.R., Fiske, S.T.: As diversity increases, people paradoxically perceive social groups as more similar. Proc. Nat. Acad. Sci. 117(23), 12741–12749 (2020)

    Article  Google Scholar 

  2. Baker, T., Bechhofer, S., Isaac, A., Miles, A., Schreiber, G., Summers, E.: Key choices in the design of simple knowledge organization system (SKOS). Web Seman. Sci. Serv. Agents World Wide Web 20, 35–49 (2013)

    Article  Google Scholar 

  3. Ballatore, A., Bertolotto, M., Wilson, D.C.: Grounding linked open data in wordnet: the case of the OSM semantic network. In: Liang, S.H.L., Wang, X., Claramunt, C. (eds.) W2GIS 2013. LNCS, vol. 7820, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37087-8_1

    Chapter  Google Scholar 

  4. Bauer, F., Kaltenböck, M.: Linked Open Data: The essentials: A Quick Start Guide for Decision Makers. Edition mono/monochrom, Vienna, Austria (2011)

    Google Scholar 

  5. Berry, K.J., Johnston, J.E., Mielke, P.W.: A Primer of Permutation Statistical Methods. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20933-9

    Book  MATH  Google Scholar 

  6. Bond, F., Foster, R.: Linking and extending an open multilingual wordnet. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1352–1362 (2013)

    Google Scholar 

  7. Bond, F., Paik, K.: A survey of wordnets and their licenses. Small, vol. 8, no. 4 (2012)

    Google Scholar 

  8. Buchan, N.R., Grimalda, G., Wilson, R., Brewer, M., Fatas, E., Foddy, M.: Globalization and human cooperation. Proc. Nat. Acad. Sci. 106(11), 4138–4142 (2009)

    Article  Google Scholar 

  9. Calzolari, N., Soria, C.: Preparing the field for an open and distributed resource infrastructure: The role of the FLaReNet network. LREC2010 (2010)

    Google Scholar 

  10. Caracciolo, C., et al.: The AGROVOC linked dataset. Seman. Web 4(3), 341–348 (2013)

    Article  Google Scholar 

  11. Cieri, C., et al.: A road map for interoperable language resource metadata (2010)

    Google Scholar 

  12. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)

    Article  Google Scholar 

  13. De Melo, G., Weikum, G.: Towards a universal wordnet by learning from combined evidence. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 513–522 (2009)

    Google Scholar 

  14. Fellbaum, C., Miller, G. (eds.): WordNet: An Electronic Lexical Database. The MIT Press, Cambridge (1998)

    Google Scholar 

  15. Hripcsak, G., Heitjan, D.F.: Measuring agreement in medical informatics reliability studies. J. Biomed. Inform. 35(2), 99–110 (2002)

    Article  Google Scholar 

  16. Hripcsak, G., Rothschild, A.S.: Agreement, the f-measure, and reliability in information retrieval. J. Am. Med. Inform. Assoc. 12(3), 296–298 (2005)

    Article  Google Scholar 

  17. Krippendorff, K.: Content Analysis: An Introduction to its Methodology. Sage Publications, New York (2018)

    Google Scholar 

  18. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics, pp. 159–174 (1977)

    Google Scholar 

  19. Maziarz, M., Piasecki, M.: Towards mapping thesauri onto plWordNet. In: Proceedings of Global Wordnet Conference GWC-2018, pp. 45–53 (2018)

    Google Scholar 

  20. Maziarz, M., Piasecki, M., Rudnicka, E., Szpakowicz, S., Kędzia, P.: plWordNet 3.0 - a comprehensive lexical-semantic resource. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2259–2268 (2016)

    Google Scholar 

  21. McCrae, J.P., Buitelaar, P.: Linking datasets using semantic textual similarity. Cybern. Inform. Technol. 18(1), 109–123 (2018)

    MathSciNet  Google Scholar 

  22. McCrae, J.P., Cillessen, D.: Towards a linking between WordNet and Wikidata. In: Proceedings of the 11th Global Wordnet Conference, pp. 252–257. Global Wordnet Association, University of South Africa (UNISA), January 2021

    Google Scholar 

  23. Miles, A., Matthews, B., Wilson, M., Brickley, D.: SKOS core: simple knowledge organisation for the Web. In: International Conference on Dublin Core and Metadata Applications, pp. 3–10 (2005)

    Google Scholar 

  24. Morshed, A., Caracciolo, C., Johannsen, G., Keizer, J.: Thesaurus alignment for Linked Data publishing. In: Proceedings of the International Conference on Dublin Core and Metadata Applications 2011, pp. 37–46. Dublin Core Metadata Initiative (2011)

    Google Scholar 

  25. Reidsma, D., Carletta, J.: Reliability measurement without limits. Comput. Linguist. 34(3), 319–326 (2008)

    Article  Google Scholar 

  26. Rudnicka, E., Witkowski, W., Piasecki, M.: A (non)-perfect match: mapping plWordNet onto princetonwordnet. In: Proceedings of the 11th Global Wordnet Conference, pp. 137–146 (2021)

    Google Scholar 

  27. Tracey, J., Strassel, S.: Basic language resources for 31 languages (plus English): the LORELEI representative and incident language packs. In: Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL), pp. 277–284 (2020)

    Google Scholar 

  28. Watson, P., Petrie, A.: Method agreement analysis: a review of correct methodology. Theriogenology 73(9), 1167–1179 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This research was financed by the Polish Ministry of Education and Science, Project CLARIN-PL, and by the European Regional Development Fund as a part of the 2014–2020 Smart Growth Operational Programme, CLARIN - Common Language Resources and Technology Infrastructure, project no. POIR.04.02.00-00C002/19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Kostkowski .

Editor information

Editors and Affiliations

6 Appendix

6 Appendix

1.1 6.1 PSA as the Cohen’s Kappa Limit

Positive specific agreement could be derived from the definition of Cohen’s kappa with the assumption that the negative class is infinitively large. We start from the definition of \(\kappa \) (with letters’ meaning established in the confusion Table 2):

$$\begin{aligned} \begin{aligned} \kappa =\frac{A_0-A_e}{1-A_e},~A_0=\frac{a+d}{N},\\ A_e=p_Y+p_N=(\frac{a+b}{N}\cdot \frac{a+c}{N})+(\frac{d+b}{N}\cdot \frac{d+c}{N}), \end{aligned} \end{aligned}$$
(3)

where \(N=a+b+c+d\) is the total number of annotations, \(A_0\) is the observed relative agreement, \(A_e\) is agreement expected by chance, and \(p_Y\) as \(p_N\) are joint probabilities of choosing “Y” and “N”, respectively [15]. Hence,

$$\begin{aligned} \begin{aligned} \kappa = \frac{\frac{a+d}{N}-(\frac{a+b}{N}\cdot \frac{a+c}{N}+\frac{d+b}{N}\cdot \frac{d+c}{N})}{1-(\frac{a+b}{N}\cdot \frac{a+c}{N}+\frac{d+b}{N}\cdot \frac{d+c}{N})}=\frac{\frac{N\cdot (a+d)}{N^2}-\frac{(a+b)\cdot (a+c)+(d+b)\cdot (d+c)}{N^2}}{\frac{N^2-((a+b)\cdot (a+c)+(d+b)\cdot (d+c))}{N^2}}\\ =\frac{N\cdot (a+d)-((a+b)\cdot (a+c)+(d+b)\cdot (d+c))}{N^2-((a+b)\cdot (a+c)+(d+b)\cdot (d+c))}. \end{aligned} \end{aligned}$$
(4)

In the numerator after elementary calculations we obtain:

$$\begin{aligned} \begin{aligned} (a^2+ab+ac+2ad+bd+cd+d^2)\\ -(a^2+ab+ac+2bc+bd+cd+d^2)=2(ad-bc), \end{aligned} \end{aligned}$$
(5)

while in the denominator we get:

$$\begin{aligned} \begin{aligned} a^2+2ab+b^2+2ac+2bc+2ad+2bd+c^2+2cd+d^2\\ -(a^2+ab+ac+2bc+bd+cd+d^2)=\\ =ab+b^2+ac+2ad+bd+c^2+cd. \end{aligned} \end{aligned}$$
(6)

Substituting the results 5 and 6 into the fraction 4 we obtain:

$$\begin{aligned} \kappa = \frac{2\cdot (ad-bc)}{ab+b^2+ac+2ad+bd+c^2+cd} = \frac{d\cdot (2a-\frac{2bc}{d})}{d\cdot (\frac{ab+b^2+ac+c^2}{d}+2a+b+c)} \end{aligned}$$
(7)

As d aproaches infinity kappa approaches PSA:

$$\begin{aligned} \lim _{d \rightarrow \infty }\kappa = \lim _{d \rightarrow \infty } \frac{2a-\frac{2bc}{d}}{\frac{ab+b^2+ac+c^2}{d}+2a+b+c} = \frac{2a-0}{0+2a+b+c} = PSA.~~\square \end{aligned}$$
(8)

1.2 6.2 PSA as the Harmonic Mean of Annotator Percentage Agreements

Lets define annotator percentage agreement (APA) as the number of agreed cases divided by the total number of each annotator decisions. For the confusion Table 2 we define APA as follows:

$$\begin{aligned} \begin{aligned} APA_1=\frac{a}{a+b},~APA_2=\frac{a}{a+c}, \end{aligned} \end{aligned}$$
(9)

“1” stands for the first annotator, while “2” for the second one. The PSA index could be then defined as the harmonic mean of \(APA_1\) and \(APA_2\):

$$\begin{aligned} PSA=\frac{2\cdot APA_1\cdot APA_2}{APA_1+APA_2}. \end{aligned}$$
(10)

Through elementary transformations we obtain from the definition 10:

$$\begin{aligned} \begin{aligned} PSA=\frac{2\cdot \frac{a}{a+b}\cdot \frac{a}{a+c}}{\frac{a}{a+b}+\frac{a}{a+c}}=\frac{\frac{2a^2}{(a+b)\cdot (a+c)}}{\frac{a(a+c)+a(a+b)}{(a+b)\cdot (a+c)}}=\frac{2a^2}{a(a+c)+a(a+b)}=\frac{2a}{2a+b+c}.~~\square \end{aligned} \end{aligned}$$
(11)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Janz, A., Kostkowski, G., Maziarz, M. (2021). Constructing VeSNet: Mapping LOD Thesauri onto Princeton WordNet and Polish WordNet. In: Wojtkiewicz, K., Treur, J., Pimenidis, E., Maleszka, M. (eds) Advances in Computational Collective Intelligence. ICCCI 2021. Communications in Computer and Information Science, vol 1463. Springer, Cham. https://doi.org/10.1007/978-3-030-88113-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88113-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88112-2

  • Online ISBN: 978-3-030-88113-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics