Skip to main content

Negative Sampling for Knowledge Graph Completion Based on Generative Adversarial Network

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2021)

Abstract

Knowledge graph, a semantic network, to organize and store data is increasingly interested in the research community and businesses such as Google, Facebook, Amazon. For the machine learning models to work well in this data, we need to prepare good quality negative samples. Generating these negative examples is challenging in the knowledge graph because it is pretty hard to determine whether a link that does not appear in the graph is a negative or positive sample. In this paper, we apply the generative adversarial network to the ConvKB method to generate negative samples, thereby producing a better graph embedding. Experiments show that our approach has quality improvement compared to the original method on well-known datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Neural Information Processing Systems (NIPS), pp. 1–9 (2013)

    Google Scholar 

  2. Cai, L. and Wang, W.Y: KBGAN: adversarial learning for knowledge graph embeddings. arXiv preprint arXiv:1711.04071 (2017)

  3. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Google Scholar 

  4. Cheng, K., Zhu, Y., Zhang, M. and Sun, Y.: NoiGAN: noise aware knowledge graph embedding with adversarial learning (2019)

    Google Scholar 

  5. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

    Google Scholar 

  6. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE. VLDB J. 24(6), 707–730 (2015)

    Google Scholar 

  7. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

    Google Scholar 

  8. Guo, L., Sun, Z., Hu, W.: Learning to exploit long-term relational dependencies in knowledge graphs. In: International Conference on Machine Learning, pp. 2505–2514. PMLR (2019)

    Google Scholar 

  9. Han, X., Zhang, C., Ji, Y., Hu, Z.: A dilated recurrent neural network-based model for graph embedding. IEEE Access 7, 32085–32092 (2019)

    Google Scholar 

  10. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning: Methods, Systems, Challenges, pp. 219. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-05318-5

  11. Kotnis, B., Nastase, V.: Analysis of the impact of negative sampling on link prediction in knowledge graphs. arXiv preprint arXiv:1708.06816 (2017)

  12. Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.: Fine-grained evaluation of rule-and embedding-based systems for knowledge graph completion. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 3–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_1

  13. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for knowledge graph completion. In: IJCAI, pp. 3137–3143 (2019)

    Google Scholar 

  14. Nathani, D., Chauhan, J., Sharma, C., Kaul, M.: Learning attention-based embeddings for relation prediction in knowledge graphs. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (2019)

    Google Scholar 

  15. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: Proceedings of NAACL-HLT (2017)

    Google Scholar 

  16. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), pp. 11–33 (2015)

    Google Scholar 

  17. Ortona, S., Meduri, V.V., Papotti, P.: Robust discovery of positive and negative rules in knowledge bases. In: IEEE 34th International Conference on Data Engineering (ICDE), pp. 1168–1179 (2018)

    Google Scholar 

  18. Peng, B., Min, R., Ning, X.: CNN-based dual-chain models for knowledge graph learning. arXiv preprint arXiv:1911.06910 (2019)

  19. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017) (2017)

    Google Scholar 

  20. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: Advances in Neural Information Processing Systems, pp. 926–934 (2013)

    Google Scholar 

  21. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É, Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080, PMLR (2016)

    Google Scholar 

  22. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  23. Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A capsule network-based embedding model for knowledge graph completion and search personalization. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 2180–2189 (2019)

    Google Scholar 

  24. Wang, X., Xu, Y., He, X., Cao, Y., Wang, M. and Chua, T.S.: Reinforced negative sampling over knowledge graph for recommendation. In: Proceedings of The Web Conference 2020, pp. 99–109 (2020)

    Google Scholar 

  25. Zhang, W., Chen, T., Wang, J., Yu, Y.: Optimizing Top-N collaborative filtering via dynamic negative item sampling. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 785–788 (2013)

    Google Scholar 

  26. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality, pp. 57–66 (2015)

    Google Scholar 

  27. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (2018, page to appear)

    Google Scholar 

  28. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Workshop on CVSMC, pp. 57–66 (2015)

    Google Scholar 

  29. Wang, Y., Ruffinelli, D., Broscheit, S., Gemulla, R.: On evaluating embedding models for knowledge base completion. Technical report. arXiv:1812.06410 (2018)

Download references

Acknowledgements

This research is funded by the Faculty of Information Technology, University of Science, VNU-HCM, Vietnam, Grant number CNTT 2021-03 and Advanced Program in Computer Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, T., Pham, T., Le, B. (2021). Negative Sampling for Knowledge Graph Completion Based on Generative Adversarial Network. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2021. Lecture Notes in Computer Science(), vol 12876. Springer, Cham. https://doi.org/10.1007/978-3-030-88081-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88081-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88080-4

  • Online ISBN: 978-3-030-88081-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics