Skip to main content

Image Tampering Localization Using Unified Two-Stream Features Enhanced with Channel and Spatial Attention

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Abstract

Image tampering localization has attracted much attention in recent years. To differentiate between tampered and pristine image regions, many methods have increasingly leveraged the powerful feature learning ability of deep neural networks. Most of these methods operate on either spatial image domain directly or residual image domain constructed with high-pass filtering, while some take inputs from both domains and fuse the features just before making decisions. Though they have achieved promising performance, the gain of integrating feature representations of different domains is overlooked. In this paper, we show that learning a unified feature set is beneficial for tampering localization. In the proposed method, low-level features are firstly extracted from two input streams: one is a spatial image, and the other is a high-pass filtered residual image. The features are then separately enhanced with channel attention and spatial attention, and are subsequently subjected to an early-fusion to form a unified feature representation. The unified features play an important role under an adapted Mask R-CNN framework, achieving more accurate pixel-level tampering localization. Experimental results on five tampered image datasets have shown the effectiveness of the proposed method. The implementation is available at https://github.com/media-sec-lab/AEUF-Net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The results of conventional methods are all underlined, since these methods are unsupervised ones.

References

  1. Bappy, J.H., Simons, C., Nataraj, L., Manjunath, B., Roy-Chowdhury, A.K.: Hybrid LSTM and encoder-decoder architecture for detection of image forgeries. IEEE Trans. Image Process. 28(7), 3286–3300 (2019)

    Article  MathSciNet  Google Scholar 

  2. Bayar, B., Stamm, M.: Constrained convolutional neural networks: a new approach towards general purpose image manipulation detection. IEEE Trans. Inf. Forensics Secur. 13(11), 2691–2706 (2018)

    Article  Google Scholar 

  3. Camacho, I.C., Wang, K.: Data-dependent scaling of CNN’s first layer for improved image manipulation detection. In: 19th International Workshop on Digital-forensics and Watermarking (2020)

    Google Scholar 

  4. Cozzolino, D., Verdoliva, L.: Single-image splicing localization through autoencoder-based anomaly detection. In: IEEE International Workshop on Information Forensics and Security, pp. 1–6 (2016)

    Google Scholar 

  5. Cozzolino, D., Verdoliva, L.: Noiseprint: a CNN-based camera model fingerprint. IEEE Trans. Inf. Forensics Secur. 15, 144–159 (2019)

    Article  Google Scholar 

  6. Dong, J., Wang, W., Tan, T.: CASIA image tampering detection evaluation database. In: IEEE China Summit and International Conference on Signal and Information Processing, pp. 422–426 (2013)

    Google Scholar 

  7. Ferrara, P., Bianchi, T., Rosa, A., Piva, A.: Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Trans. Inf. Forensics Secur. 7(5), 1566–1577 (2012)

    Article  Google Scholar 

  8. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  9. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015)

    Google Scholar 

  10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587 (2014)

    Google Scholar 

  11. Guan, H., et al.: MFC datasets: large-scale benchmark datasets for media forensic challenge evaluation. In: IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW), pp. 63–72 (2019)

    Google Scholar 

  12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE International Conference on Computer Vision (ICCV), pp. 2961–2969 (2017)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  14. Hu, X., Zhang, Z., Jiang, Z., Chaudhuri, S., Yang, Z., Nevatia, R.: SPAN: spatial pyramid attention network for image manipulation localization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 312–328. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_19

    Chapter  Google Scholar 

  15. Huh, M., Liu, A., Owens, A., Efros, A.A.: Fighting fake news: image splice detection via learned self-consistency. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 106–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_7

    Chapter  Google Scholar 

  16. Joseph, R., Chithra, A.: Literature survey on image manipulation detection. International Research Journal of Engineering and Technology 2(04) (2015). 2395–0056

    Google Scholar 

  17. Krawetz, N., Solutions, H.F.: A picture’s worth. Hacker Fact. Solutions 6(2), 2 (2007)

    Google Scholar 

  18. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  19. Mahdian, B., Saic, S.: Using noise inconsistencies for blind image forensics. Image Vis. Comput. 27(10), 1497–1503 (2009)

    Article  Google Scholar 

  20. Mayer, O., Stamm, M.C.: Forensic similarity for digital images. IEEE Trans. Inf. Forensics Secur. 15, 1331–1346 (2019)

    Article  Google Scholar 

  21. Mayer, O., Stamm, M.C.: Exposing fake images with forensic similarity graphs. IEEE J. Sel. Top. Sig. Process. 14(5), 1049–1064 (2020)

    Article  Google Scholar 

  22. Ng, T.T., Hsu, J., Chang, S.F.: Columbia image splicing detection evaluation dataset (2009). http://www.ee.columbia.edu/ln/dvmm/downloads/authspliceddataset/authspliceddataset.htm

  23. Novozamsky, A., Mahdian, B., Saic, S.: IMD2020: a large-scale annotated dataset tailored for detecting manipulated images. In: IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW), pp. 71–80 (2020)

    Google Scholar 

  24. Qiu, X., Li, H., Luo, W., Huang, J.: A universal image forensic strategy based on steganalytic model. In: 2nd ACM Workshop on Information Hiding and Multimedia Security, pp. 165–170 (2014)

    Google Scholar 

  25. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  26. Salloum, R., Ren, Y., Kuo, C.C.J.: Image splicing localization using a multi-task fully convolutional network (MFCN). J. Vis. Commun. Image Represent. 51, 201–209 (2018)

    Article  Google Scholar 

  27. Verdoliva, L.: Media forensics and DeepFakes: an overview. IEEE J. Sel. Top. Sig. Process. 14(5), 910–932 (2020)

    Article  Google Scholar 

  28. Wen, B., Zhu, Y., Subramanian, R., Ng, T.T., Shen, X., Winkler, S.: Coverage-a novel database for copy-move forgery detection. In: IEEE International Conference on Image Processing (ICIP), pp. 161–165 (2016)

    Google Scholar 

  29. Wu, Y., AbdAlmageed, W., Natarajan, P.: Mantra-net: manipulation tracing network for detection and localization of image forgeries with anomalous features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9543–9552 (2019)

    Google Scholar 

  30. Yang, C., Li, H., Lin, F., Jiang, B., Zhao, H.: Constrained R-CNN: a general image manipulation detection model. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2020)

    Google Scholar 

  31. Yin, Q., Wang, J., Luo, X.: A hybrid loss network for localization of image manipulation. In: 19th International Workshop on Digital-forensics and Watermarking, pp. 237–247 (2020)

    Google Scholar 

  32. Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Large-scale evaluation of splicing localization algorithms for web images. Multimedia Tools Appl. 76(4), 4801–4834 (2017)

    Article  Google Scholar 

  33. Zhang, R., Ni, J.: A dense U-Net with cross-layer intersection for detection and localization of image forgery. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2982–2986 (2020)

    Google Scholar 

  34. Zhao, H., Kong, X., He, J., Qiao, Yu., Dong, C.: Efficient image super-resolution using pixel attention. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 56–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_3

    Chapter  Google Scholar 

  35. Zhou, P., Han, X., Morariu, V., Davis, L.: Learning rich features for image manipulation detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1053–1061 (2018)

    Google Scholar 

  36. Zhu, X., Qian, Y., Zhao, X., Sun, B., Sun, Y.: A deep learning approach to patch-based image inpainting forensics. Sig. Process. Image Commun. 67, 90–99 (2018)

    Article  Google Scholar 

  37. Zhuang, P., Li, H., Tan, S., Li, B., Huang, J.: Image tampering localization using a dense fully convolutional network. IEEE Trans. Inf. Forensics Secur. 16, 2986–2999 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by NSFC (Grant 61802262 and Grant 61872244), Guangdong Basic and Applied Basic Research Foundation (Grant 2019B151502001), Shenzhen R&D Program (Grant JCYJ20200109105008228), and in part by the Alibaba Group through Alibaba Innovative Research (AIR) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Chen, X., Zhuang, P., Li, B. (2021). Image Tampering Localization Using Unified Two-Stream Features Enhanced with Channel and Spatial Attention. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13020. Springer, Cham. https://doi.org/10.1007/978-3-030-88007-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88007-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88006-4

  • Online ISBN: 978-3-030-88007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics