Skip to main content

High Pressure Modification

  • Chapter
  • First Online:
Physicochemical and Enzymatic Modification of Gums
  • 228 Accesses

Abstract

There has been a great interest in using gums as natural ingredients in food and pharmaceutical industries. However, there might be some limitiation with the physicochemical features of the gums that limit its utilization in different applications. One of the solutions might be the modification of the gums using different techniques, including high pressure approaches or the combination of these methods with other approaches. In this chapter the modification of gums by high pressure equipment and state-of-the-art, as well as their advantages and disadvantages are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal S, Vivekanandan S, David T, Mitra M, Palanivelu J, Chidambaram R. Nanoemulsions: industrial production and food-grade applications. In: Gutierrez TJ, editor. Polymers for agri-food applications. Cham: Springer International Publishing; 2019.

    Google Scholar 

  2. Al-Assaf S, Sakata M, Mckenna C, Aoki H, Phillips GO. Molecular associations in acacia gums. Struct Chem. 2009;20:325.

    Article  CAS  Google Scholar 

  3. Belmiro RH, Tribst AAL, Cristianini M. Application of high-pressure homogenization on gums. J Sci Food Agric. 2018;98:2060–9.

    Article  CAS  PubMed  Google Scholar 

  4. Chen J, Liang R-H, Liu W, Liu C-M, Li T, Tu Z-C, Wan J. Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism. Food Hydrocoll. 2012;28:121–9.

    Article  Google Scholar 

  5. Chevalier-Lucia D, Picart-Palmade L. Chapter: 5: High-pressure homogenization in food processing. In: Chemat F, Vorobiev E, editors. Green food processing techniques. Academic Press; 2019.

    Google Scholar 

  6. Christiaens S, Mbong VB, Van Buggenhout S, David CC, Hofkens J, Van Loey AM, Hendrickx ME. Influence of processing on the pectin structure–function relationship in broccoli purée. Innovative Food Sci Emerg Technol. 2012;15:57–65.

    Article  CAS  Google Scholar 

  7. Corredig M, Wicker L. Changes in the molecular weight distribution of three commercial pectins after valve homogenization. Food Hydrocoll. 2001;15:17–23.

    Article  CAS  Google Scholar 

  8. Eren NM, Santos PHS, Campanella O. Mechanically modified xanthan gum: rheology and polydispersity aspects. Carbohydr Polym. 2015;134:475–84.

    Article  CAS  PubMed  Google Scholar 

  9. Ganesan P, Karthivashan G, Park SY, Kim J, Choi D-K. Microfluidization trends in the development of nanodelivery systems and applications in chronic disease treatments. Int J Nanomedicine. 2018;13:6109–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghaderi S, Hesarinejad MA, Shekarforoush E, Mirzababaee SM, Karimpour F. Effects of high hydrostatic pressure on the rheological properties and foams/emulsions stability of Alyssum homolocarpum seed gum. Food Sci Nutr. 2020;8:5571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gulrez SKH, Al-Assaf S, Fang Y, Phillips GO, Gunning AP. Revisiting the conformation of xanthan and the effect of industrially relevant treatments. Carbohydr Polym. 2012;90:1235–43.

    Article  CAS  Google Scholar 

  12. Guo X, Chen M, Li Y, Dai T, Shuai X, Chen J, Liu C. Modification of food macromolecules using dynamic high pressure microfluidization: a review. Trends Food Sci Technol. 2020;100:223–34.

    Article  CAS  Google Scholar 

  13. Harte F, Venegas R. A model for viscosity reduction in polysaccharides subjected to high-pressure homogenization. J Texture Stud. 2010;41:49–61.

    Article  Google Scholar 

  14. Hite BH. The effect of pressure in the preservation of milk: a preliminary report. West Virginia Agricultural Experiment Station; 1899.

    Book  Google Scholar 

  15. Jasmina H, Džana O, Alisa E, Edina V, Ognjenka R. Preparation of nanoemulsions by high-energy and lowenergy emulsification methods. In: CMBEBIH 2017. Springer; 2017.

    Google Scholar 

  16. Lagoueyte N, Paquin P. Effects of microfluidization on the functional properties of xanthan gum. Food Hydrocoll. 1998;12:365–71.

    Article  CAS  Google Scholar 

  17. Laneuville SI, Turgeon SL, Paquin P. Changes in the physical properties of xanthan gum induced by a dynamic high-pressure treatment. Carbohydr Polym. 2013;92:2327–36.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Wu C-L, Liu J, Zhu Y, Zhang X-Y, Jiang L-Z, Qi B-K, Zhang X-N, Wang Z-J, Teng F. Soy protein isolate-phosphatidylcholine nanoemulsions prepared using high-pressure homogenization. Nanomaterials. 2018;8:307.

    Article  PubMed Central  Google Scholar 

  19. Ma F, Bell AE, Davis FJ. Effects of high-hydrostatic pressure and pH treatments on the emulsification properties of gum arabic. Food Chem. 2015;184:114–21.

    Article  CAS  PubMed  Google Scholar 

  20. Ma F, Bell AE, Davis FJ, Chai Y. Effects of high hydrostatic pressure and chemical reduction on the emulsification properties of gum arabic. Food Chem. 2015;173:569–76.

    Article  CAS  PubMed  Google Scholar 

  21. Nikbakht Nasrabadi M, Goli SAH, Nasirpour A. Evaluation of biopolymer-based emulsion for delivering conjugated linoleic acid (CLA) as a functional ingredient in beverages. J Dispers Sci Technol. 2015;36:778–88.

    Article  Google Scholar 

  22. Nikbakht Nasrabadi M, Goli SAH, Nasirpour A. Stability assessment of conjugated linoleic acid (CLA) oil-in-water beverage emulsion formulated with acacia and xanthan gums. Food Chem. 2016;199:258–64.

    Article  CAS  PubMed  Google Scholar 

  23. Nikbakht Nasrabadi M, Goli SAH, Sedaghat Doost A, Dewettinck K, Van Der Meeren P. Bioparticles of flaxseed protein and mucilage enhance the physical and oxidative stability of flaxseed oil emulsions as a potential natural alternative for synthetic surfactants. Colloids Surf B: Biointerfaces. 2019;184:110489.

    Article  CAS  PubMed  Google Scholar 

  24. Nikbakht Nasrabadi M, Goli SAH, Sedaghat Doost A, Roman B, Dewettinck K, Stevens CV, Van Der Meeren P. Plant based Pickering stabilization of emulsions using soluble flaxseed protein and mucilage nano-assemblies. Colloids Surf A Physicochem Eng Asp. 2019;563:170–82.

    Article  CAS  Google Scholar 

  25. Nikbakht Nasrabadi M, Sedaghat Doost A, Mezzenga R. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll. 2021;118:106789.

    Article  CAS  Google Scholar 

  26. Porto BC, Cristianini M. Evaluation of cashew tree gum (Anacardium occidentale L.) emulsifying properties. LWT Food Sci Technol. 2014;59:1325–31.

    Article  CAS  Google Scholar 

  27. Porto BC, Cristianini M. Effect of dynamic high pressure on emulsifying and encapsulant properties of cashew tree gum. Carbohydr Polym. 2018;186:350–7.

    Article  CAS  PubMed  Google Scholar 

  28. Porto BC, Augusto PED, Terekhov A, Hamaker BR, Cristianini M. Effect of dynamic high pressure on technological properties of cashew tree gum (Anacardium occidentale L.). Carbohydr Polym. 2015;129:187–93.

    Article  CAS  PubMed  Google Scholar 

  29. Porto BC, Tribst AAL, Cristianini M. Chapter 10: Dynamic high pressure effects on biopolymers: polysaccharides and proteins. In: Grumezescu AM, Holban AM, editors. Biopolymers for food design. Academic Press; 2018.

    Google Scholar 

  30. Riegger BR, Kowalski R, Hilfert L, Tovar GEM, Bach M. Chitosan nanoparticles via high-pressure homogenization-assisted miniemulsion crosslinking for mixed-matrix membrane adsorbers. Carbohydr Polym. 2018;201:172–81.

    Article  CAS  PubMed  Google Scholar 

  31. Roach A, Harte F. Disruption and sedimentation of casein micelles and casein micelle isolates under high-pressure homogenization. Innovative Food Sci Emerg Technol. 2008;9:1–8.

    Article  CAS  Google Scholar 

  32. Sedaghat Doost A, Nikbakht Nasrabadi M, Wu J, A’yun Q, Van Der Meeren P. Maillard conjugation as an approach to improve whey proteins functionality: a review of conventional and novel preparation techniques. Trends Food Sci Technol. 2019;91:1–11.

    Article  CAS  Google Scholar 

  33. Shpigelman A, Kyomugasho C, Christiaens S, Van Loey AM, Hendrickx ME. The effect of high pressure homogenization on pectin: importance of pectin source and pH. Food Hydrocoll. 2015;43:189–98.

    Article  CAS  Google Scholar 

  34. Silvestri S, Gabrielson G. Degradation of tragacanth by high shear and turbulent forces during microfluidization. Int J Pharm. 1991;73:163–9.

    Article  CAS  Google Scholar 

  35. Singha S, Bhattacharya B, Basu S. Chapter 20: Process technology of nanoemulsions in food processing. In: Grumezescu AM, editor. Encapsulations. Academic Press; 2016.

    Google Scholar 

  36. Tan TB, Yussof NS, Abas F, Mirhosseini H, Nehdi IA, Tan CP. Comparing the formation of lutein nanodispersion prepared by using solvent displacement method and high-pressure valve homogenization: effects of formulation parameters. J Food Eng. 2016;177:65–71.

    Article  CAS  Google Scholar 

  37. Tipvarakarnkoon T, Senge B. Effect of high pressure treatment on rheological properties of xanthan/guar mixtures. Department of Food Rheology, Technology University Berlin, Berlin, Germany. 2016.

    Google Scholar 

  38. Tipvarakarnkoon T, Einhorn-Stoll U, Senge B. Effect of modified Acacia gum (SUPER GUM™) on the stabilization of coconut o/w emulsions. Food Hydrocoll. 2010;24:595–601.

    Article  CAS  Google Scholar 

  39. Vatankhah H, Taherian AR, Ramaswamy HS. High-pressure induced thermo-viscoelasticity and dynamic rheology of gum Arabic and chitosan aqueous dispersions. Lebensm Wiss Technol. 2018;89:291–8.

    Article  CAS  Google Scholar 

  40. Villay A, Lakkis de Filippis F, Picton L, Le Cerf D, Vial C, Michaud P. Comparison of polysaccharide degradations by dynamic high-pressure homogenization. Food Hydrocoll. 2012;27:278–86.

    Article  CAS  Google Scholar 

  41. Wang Y, Li D, Wang L-J, Xue J. Effects of high pressure homogenization on rheological properties of flaxseed gum. Carbohydr Polym. 2011;83:489–94.

    Article  CAS  Google Scholar 

  42. Xu J, Mukherjee D, Chang SKC. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization. Food Chem. 2018;240:1005–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Nikbakht Nasrabadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikbakht Nasrabadi, M. (2021). High Pressure Modification. In: Gahruie, H.H., Eskandari, M.H., Mousavi Khaneghah, A., Ghiasi, F. (eds) Physicochemical and Enzymatic Modification of Gums. Springer, Cham. https://doi.org/10.1007/978-3-030-87996-9_13

Download citation

Publish with us

Policies and ethics