Skip to main content

Approach Towards Deep-Sea Mining: Current Status and Future Prospects

  • Chapter
  • First Online:
Perspectives on Deep-Sea Mining

Abstract

Deep-sea mineral resources within and beyond the national jurisdictions offer several opportunities for exploration and possible exploitation owing to their potential as alternate source of metals such as Ni, Cu, Co, rare earths and others. These are considered critical for meeting mankind’s increasing demands including that of transitioning to green energy in view of depleting or low-grade terrestrial deposits. Currently, several studies are underway for evaluating the economic and potential benefits of mining the deep-seabed minerals as well as developing suitable technologies for their exploitation, on one hand, and also for assessing the ecological risks, suggesting ecosystem-based management approach and developing relevant regulations for deep-sea mining, on the other. This chapter aims to put into perspective the current status and future prospects of deep-sea mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al Barazi, S., T. Brandenberg, T. Kuhn, M. Schmidt, S. Vetter, 2018. DERA Rohstoffinformationen 36. Kobalt.

    Google Scholar 

  • Atmanand, M.A., G.A. Ramadass, 2017. Concepts of deep-sea mining technologies. In: Deep-sea mining: Resource potential, technical and environmental considerations (Ed. R. Sharma), Springer International Publishing AG, pp. 305-344.

    Google Scholar 

  • Billet, D.S.M., D.O.B. Jones, P.P.E. Weaver, 2019. Improving environmental practices in deep-sea mining. In: Sharma, R. (Ed.) Deep-sea mining and environment – impacts, consequences and management. Springer International Publishers AG, 403-446.

    Google Scholar 

  • Boschen, R.E., Rowden, A. A., Clark, M.R. and Gardner, J.P.A. (2013). Mining of deep-sea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast. Manag. 84, 54–67. doi:https://doi.org/10.1016/j.ocecoaman.2013.07.005

    Article  Google Scholar 

  • Boschen-Rose R.E., Clark M.R., Rowden A.A., Gardner J.P.A (2022). Integrated environmental management of the ecological impacts from seafloor massive sulfide mining – perspectives from the Kermadec Volcanic Arc, New Zealand. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG. (pp. 373–422).

    Google Scholar 

  • Calvo, G., G. Mudd, A. Valero, A. Valero, 2016. Decreasing ore grades in global metallic mining: A theoretical issue or a global reality? Resources, 5(4), 36.

    Google Scholar 

  • Carreiro-Silva, M., Andrews, A.H., Braha-Henriques, A., de Matos, A., Porteiro, F.M. & Santos, R.S. (2013). Variability in growth rates of long-lived black coral Leiopathes sp. from the Azores. Marine Ecology Progress Series 473, 189-199.

    Google Scholar 

  • Cherkashov, G. 2017. Seafloor massive sulfides: distribution and prospecting. In. Sharma R. (Ed.) Deep-sea mining; Resource potential, technical and environmental considerations, Springer International Publishing AG, Switzerland, 143-164.

    Google Scholar 

  • Chown SL (2012) Antarctic marine biodiversity and deep-sea hydrothermal vents. PLoSBiol 10(1): e1001232. doi:https://doi.org/10.1371/journal.pbio.1001232

    Article  Google Scholar 

  • Clark, M., 2019. The development of environmental impact assessments for deep-sea mining. In: Sharma, R. (Ed.) Deep-sea mining and environment – impacts, consequences and management. Springer International Publishers AG, 447-470.

    Google Scholar 

  • Clarke M.R., R. Johnson, J. Hyman, 2022. Adaptive Management as a tool for effective environmental management of deep-sea mining. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG. (pp. 339–371).

    Google Scholar 

  • Cormier, R., 2019. Ecosystem approach for the management of deep-sea mining. In: Sharma, R. (Ed.) Deep-sea mining and environment – impacts, consequences and management. Springer International Publishers AG, 381-402.

    Google Scholar 

  • Cormier, R., A. Minkiewicz, 2022. Operational aspects of implementing regulatory frameworks to manage deep-sea mining activities. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG. (pp. 593–612).

    Google Scholar 

  • Cronan, D. S. 1980. Underwater minerals. Academic Press, London. 362 pp.

    Google Scholar 

  • Cronan, D. S., S. A. Moorby. 1981. Manganese nodules and other ferromanganese oxide deposits from the Indian Ocean. J. Geol.Soc. Lond. 138:527-539.

    Google Scholar 

  • Cronan, D.S. 2022. Deep-sea mining: Historical Perspectives. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG. (pp. 3–11).

    Google Scholar 

  • Cuyvers, L., Berry, W., Gjerde, K., Thiele, T. and Wilhem, C. (2018). Deep seabed mining: a rising environmental challenge. Gland, Switzerland: IUCN and Gallifrey Foundation. x + 74pp.

    Google Scholar 

  • De Bruyne K, Harmen Stoffers, Stéphane Flamen, Hendrik De Beuf, Céline Taymans, Samantha Smith, Kris Van Nijen 2022. A precautionary approach to developing nodule collector technology. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG. (pp. 137–165).

    Google Scholar 

  • Doorn E.V., J. Laugesen, M. Haeckel, N. Mestre, F. Skjeret, A. Vink 2022. Risk assessment for deep-seabed mining. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG. (pp. 497–526).

    Google Scholar 

  • Duhayon C, S. Boel, 2022. Comparative advantages of the mineral processing of deep sea polymetallic nodules over terrestrial ores. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG. (pp. 199–217).

    Google Scholar 

  • Durden, J.M., L.E. Lallier, K. Murphy, A. Jaeckel, K. Gjerde, D.O.B. Jones, 2018. Environmental impact assessment process for deep-sea mining in the ‘Area’. Marine Policy, 87, 194-202.

    Google Scholar 

  • Ellefmo, S. L., 2022. Conceptual 3D modelling and direct block scheduling of a massive seafloor sulfide occurrence. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG (pp. 465–496).

    Google Scholar 

  • Fisher, C.R., Rowden, A.A., Clark, M.R., and Desbruyères, D. (2013). Biology associated with sea-floor massive sulphide deposits. In Baker E. and Beaudoin Y. (Eds.) (2013) Deep Sea Minerals: Sea-Floor Massive Sulphides, a Physical, Biological, Environmental and Technical Review. Vol. 1A, 19-26.Secretariat of the Pacific Community.

    Google Scholar 

  • Foell, EJ, Thiel, H, and Schriever, G 1990. “DISCOL: A Longterm Largescale Disturbance – Recolonisation Experiment in the Abyssal Eastern Tropical Pacific Ocean,” Proc of Offshore Technology Conference, Houston, USA, Paper No. 6328, pp. 497-503.

    Google Scholar 

  • Fouquet, Y., D. Lacroix, 2014. Deep-sea marine mineral resources. Springer, Heidelberg.

    Google Scholar 

  • Frazer, J. Z., L. L. Wilson. 1980. Nodule Resources in the Indian Ocean. Mar. Min. 2:257-256.

    Google Scholar 

  • Frazer, J. Z., M.B. Fisk. 1981. Geological factors related to characteristics of seafloor manganese nodule deposits. Deep-Sea Research, 28A:1533-1551.

    Google Scholar 

  • Fukushima, T 1995. “Overview “Japan Deep-sea Impact Experiment = JET,” Proc. of 1st ISOPE Ocean Mining Symp, Tsukuba, Japan, ISOPE, pp 47-53.

    Google Scholar 

  • Fukushima, T. (2007) Amounts of megabenthic organisms in areas of manganese nodules, cobalt-rich crusts and polymetallic sulphides occurrences. Proceedings of ISA) Workshop on: Polymetallic Sulphides and Cobalt-Rich Ferromanganese Crust Deposits: Establishment of Environmental Baselines and an Associated Monitoring Programme During Exploration (September 2004). International Seabed Authority, Kingston, Jamaica. pp. 356–368. (http://www.isa.org.jm/en/documents/publications)

  • Fukushima, T., A. Tsune, 2019. Long-term monitoring of environmental conditions of benthic impact experiment. In: Sharma R. (Ed.) Deep-sea mining and environment – impacts, consequences and management. Springer International Publishers AG, 191-212.

    Google Scholar 

  • Fukushima, T., A. Tsune, H. Sugishima, 2022. Comprehensive understanding of seafloor disturbance and environmental impact scenarios. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG. (pp. 313–337).

    Google Scholar 

  • Glasby, G.P. 1972. Geochemistry of manganese nodules from the Northwest Indian Ocean. In: Ferromanganese deposits on the ocean floor, ed. D.R. Horn, Washington: National Science Foundation, 93-104.

    Google Scholar 

  • Glasby, G. P. 1982. Manganese Nodules from the South Pacific: An Evaluation. Mar. Min. 3:231-270.

    Google Scholar 

  • Glasby, G. P., P. Stoffers, A. Sioulas, T. Thijssen, G. Friedrich 1982. Manganese Nodules formation in the Pacific Ocean: a general theory. Geo-Marine Letters, 2:47-53.

    Google Scholar 

  • Gollner, S., Kaiser, S., Menzel, L., Jones, D.O.B., Brown, A., Mestre, N.C., van Oevelen, D., Menot, L., Colaço, A., Canals, M., Cuvelier, D., Durden, J.M., Gebruk, A., Egho, G.A., Haeckel, M., Marcon, Y., Mevenkamp, L., Morato, T., Pham, C.K., Purser, A., Sanchez-Vidal, A., Vanreusel, A., Vink, A., Martinez Arbizu, P., (2017). Resilience of benthic deep-sea fauna to mining activities. Marine Environmental Research, 129(Supplement C), 76–101.

    Google Scholar 

  • Halbach, P., C.D. Sattler, F. Teichmann, M. Wahsner 1989. Cobalt rich and platinum bearing manganese crust deposits on seamounts: nature, formation and metal potential. Marine Mining, 8:23.

    Google Scholar 

  • Halbach, P. E, J Andreas, G. Cherkashov, 2017. Marine ferromanganese crust deposits: description and formation, occurrence and distribution, estimated world-wide resources In. Sharma R. (Ed.) Deep-sea mining; Resource potential, technical and environmental considerations, Springer International Publishing AG, Switzerland, 65-142.

    Google Scholar 

  • Hein, J.R., Hsueh-Wen Yeh, Elaine Alexander 1979. Origin of iron-rich montmorillonite from the manganese nodule belt of the north equatorial Pacific. Clays and clay minerals, 27:185-194.

    Google Scholar 

  • Hein, J. R., A. Kochinsky, P. Halbach, F.T. Manheim, M. Bau, J-K. Kang, N. Lubick 1997. Iron and manganese oxide mineralisation in the Pacific. In. Manganese mineralisation: geochemistry and mineralogy of terrestrial and marine deposits, eds. Nicholon, K., J.R. Hein, B. Buhn, S. Dasgupta, Geological Society special publication no. 119, London, 123.

    Google Scholar 

  • Hein, J.R., B.R. McIntyre, D.Z. Piper 2005, Marine mineral resources of Pacific Islands – a review of the exclusive economic zones of islands of US affiliation, excluding the state of Hawaii. US Geological Survey, http://pubs.usgs.gov/circ/2005/1286/.

  • Hein J.R., Mizell K., Koschinsky A., Conrad T.A., 2013. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geology Reviews, 51, pp. 1–14.

    Google Scholar 

  • Hein, J.R et al., 2015. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions. Ore Geology Review. 68, 97-116.

    Google Scholar 

  • Hein, J.R., A. Koschinsky, T. Kuhn 2020. Deep-ocean polymetallic nodules as a resource for critical materials. Nature Reviews – Earth and Environment, vol. 1, 158-169.

    Google Scholar 

  • Hong Sup, Kim Hyung-Woo, Yeu Taekyung, Choi Jong-Su, Lee Tae Hee, Bae Dae Sung, Lee Jong-Gap (2019). Technologies for Safe and Sustainable Mining of Deep-Seabed Minerals. In: Sharma R. (Ed.) Deep-sea mining and environment – impacts, consequences and management. Springer International Publishers AG, 95-143.

    Google Scholar 

  • IMO, 1972. Convention on the Prevention of Marine Pollution by Dumping of Wastes and other Matters. International Maritime Organization.

    Google Scholar 

  • IMO, 1978. International Convention for the Prevention of Pollution from Ships. International Maritime Organization IMO MARPOL 73/78.

    Google Scholar 

  • IMO,2014 Guidelines for the Reduction of Underwater Noise from Commercial Shipping to Address Adverse Impact on Marine Life. International Maritime Organization IMO MEPC.1/Circ.833.

    Google Scholar 

  • IMO 2019, Implementing the ballast water convention. http://www.imo.org/en/MediaCentre/HotTopics/Pages/Implementing-the-BWM-Convention.aspx.

  • Ingole, B.S; Ansari, Z.A., Rathod, V., Rodrigues, N., 2001. Response of deep-sea macrobenthos to a small-scale environmental disturbance. Deep-Sea Research II, 48 (16): 3401-3410.

    Google Scholar 

  • ISA, 1999. “Deep Seabed Polymetallic Nodule Exploration: Development of Environmental Guidelines,” Proc ISA Workshop, Sanya, China, 1-5 June 1998, The International Seabed Authority, Pub No ISA/99/02, pp 222-223.

    Google Scholar 

  • ISA, 2008a. Executive summary of the International Seabed Authority’s workshop on Polymetallic nodule mining technology: current status and challenges ahead. International Seabed Authority: Chennai, India, February, 2008, pp. 20.

    Google Scholar 

  • ISA, 2008b. Rationale and recommendations for the establishment of preservation reference areas for nodule mining in the Clarion-Clipperton Zone. International Seabed Authority, Jamaica, ISBA/14/LTC/2

    Google Scholar 

  • ISA, 2010a. Decision of the Assembly relating to the regulations on prospecting and exploration for polymetallic nodules in the Area ISBA/6/A/18.

    Google Scholar 

  • ISA, 2010b. Decision of the Assembly of the International Seabed Authority relating to the regulations on prospecting and exploration for polymetallic sulphides in the Area (ISBA/16/A/12 Rev.1).

    Google Scholar 

  • ISA, 2011. Environmental Management Plan for the Clarion-Clipperton Zone. International Seabed Authority, Jamaica, ISBA/17/LTC/7,

    Google Scholar 

  • ISA, 2012. Decision of the Assembly of the International Seabed Authority relating to the Regulations on Prospecting and Exploration for Cobalt-rich Ferromanganese Crusts in the Area ISBA/18/A/11.

    Google Scholar 

  • ISA, 2013a. Decision of the Council of the International Seabed Authority relating to amendments to the Regulations on Prospecting and Exploration for Polymetallic Nodules in the Area and related matters ISBA/19/C/17.

    Google Scholar 

  • ISA, 2013b. Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the Area, International Seabed Authority, Jamaica, ISBA/19/LTC/8

    Google Scholar 

  • ISA, 2019a. Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the Area, International Seabed Authority, Jamaica, ISBA/25/LTC/6.

    Google Scholar 

  • ISA, 2019b. Draft regulations on exploitation of mineral resources in the Area. International Seabed Authority, Jamaica, ISBA/25/C/WP.1

    Google Scholar 

  • ISA, 2020. Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the Area, ISBA/25/LTC/6/Rev.1

    Google Scholar 

  • ISA, 2021a. Draft Guidelines for the establishment of baseline environmental data. https://isa.org.jm/files/files/documents/expected_scope_and_standard_of_baseline_data_collection.pdf

  • ISA, 2021b. Draft Standard and Guidelines for environmental impact assessment process. https://isa.org.jm/files/files/documents/Standard_and_Guidelines_for_environmental_impact_assessment.pdf

  • ISA, 2021c. Draft Guidelines for the preparation of an environmental impact statement. https://isa.org.jm/files/files/documents/preparation_of_an_environmental_impact_statement.pdf

  • ISA, 2021d. Draft Guidelines for the preparation of environmental management and monitoring plans. https://isa.org.jm/files/files/documents/environmental_management_monitoring_plans.pdf

  • ISA, 2021e. Draft Guidelines on tools and techniques for hazard identification and risk assessments. https://isa.org.jm/files/files/documents/tools_and_techniques_for_hazard_identification_and_risk_assessments.pdf

  • Jones, D. O. B., Kaiser, S., Sweetman, A. K., Smith, C. R., Menot, L., Vink, A., D. Trueblood, J. Greinert, D.S.M. Billet, P.M. Arbizu, T. Radzeijewska, R. Singh, B. Ingole, T. Stratman, E. Simon-Lledo, J.M. Durden, M.R. Clark, 2017. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE, 12(2), DOI: https://doi.org/10.1371/journal/.pone.0171750.

  • Kawano, S, Furaya, H, 2022. Mining and Processing of Seafloor Massive Sulfides: Experiences and Challenges. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG (pp. 167–197).

    Google Scholar 

  • Kirchain R., R. Roth, T. Peacock, F. Field, C. M. Royo, 2020. Financial model updates – polymetallic nodules. MIT presentation at International Seabed Authority Webinar, October 2020.

    Google Scholar 

  • Kuhn, T., A. Wegorzewski, C. Ruhlman, A. VInk 2017, Composition, formation and occurrence of polymetallic nodules. In. Sharma R. (Ed.) Deep-sea mining; Resource potential, technical and environmental considerations, Springer International Publishing AG, Switzerland, 23-64.

    Google Scholar 

  • Lodge, M.W., Segerson, K., Squires, D., 2017. Sharing and preserving the resources in the deep-sea: challenges for the international Seabed Authority. International journal of marine and coastal law, 32: 427-457.

    Google Scholar 

  • Lodge, M., P.A. Verlaan, 2018. Deep-sea mining: international regulatory challenges and responses. Elements, 14, 331-336. Doi https://doi.org/10.2138/gselements.14.5.331.

    Article  Google Scholar 

  • Lodge, M., K. Segerson, D. Squires, 2019. Environmental policy for deep-sea mining. In: Sharma, R. (Ed.) Deep-sea mining and environment – impacts, consequences and management. Springer International Publishers AG, 347-380.

    Google Scholar 

  • Lodge M.W., M. Bourrel-McKinnon, 2022. Sharing Financial Benefits from Deep Seabed Mining: the case for a Seabed Sustainability Fund. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG. (pp. 559–578)

    Google Scholar 

  • Martin-Barajas, A., E. Lallier-Verges, L. Lecraire 1991. Characteristics of manganese nodules from the Central Indian Basin: relationship with sedimentary environment. Marine Geology, 101: 249-265.

    Google Scholar 

  • Mero J. L. 1965. The mineral resources of the sea. Amsterdam, The Netherlands: Elsevier. 312 pp.

    Google Scholar 

  • Mero, J.L., 1977. Economic aspects of nodule mining. In: Marine Manganese Deposits, Glasby, G.P. (ed), Elsevier, Amsterdam, Netherlands, pp. 327-355.

    Google Scholar 

  • Mittal, N, S. Anand, 2022. Reductive Ammonia Leaching Process for Metal Recovery from Polymetallic Nodules: Can there be a Zero Waste Approach? In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG. (pp. 263–277)

    Google Scholar 

  • Mizell K, James R. Hein, Manda Au, Amy Gartman, 2022. Estimates of metals contained in abyssal manganese nodules and ferromanganese crusts in the global ocean. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG. (pp. 53–79)

    Google Scholar 

  • Morgan, C.L., 2000. Resource Estimates of the Clarion-Clipperton Manganese Nodule Deposits. In: A Handbook of Marine Mineral Deposits, DS Cronan (ed), CRC press, Florida, USA, pp. 145-170.

    Google Scholar 

  • Morishita Y., A. Usui, N. Takahata, and Y. Sano, 2022. Secondary Ion Mass Spectrometry Microanalysis of Platinum in Hydrogenetic Ferromanganese Crusts. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG. (pp. 115–133)

    Google Scholar 

  • Mullineaux, L.S. (1987) Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. Deep-Sea Research, 34, 165–184.

    Google Scholar 

  • Nalesso, R.C., Duarte, L.F.L., Rierozzi, I. and Enumo, E.F. (1995). Tube epifauna of the polychaete Phyllochaetopterussocialis Claparede. Estuarine and Coastal Shelf Science 41, 91–100.

    Google Scholar 

  • Ozturgut E, Lavelle JW, Steffin O, Swift SA, 1980. Environmental Investigation During Manganese Nodule Mining Tests in the North Equatorial Pacific, in November 1978. NOAA Tech. Memorandum ERL MESA-48, National Oceanic and Atmospheric Administration, USA, 50.

    Google Scholar 

  • Petersen, S., A. Kratschell, N. Augustin, J. Jamieson, J.R. Hein, M.D. Hannington, 2018. News from the seabed – geological characteristics and resource potential of deep-sea mineral resources. Marine Policy, 70, 175-187.

    Google Scholar 

  • Peukert, A., T. Schoening, E. Alevizos, K. Koser, T. Kwasnitschka, J. Greinert, 2018. Understanding Mn nodule distribution and evaluation of related deep-sea mining impacts using AUV – based hydroacoustic and optical data. Biogeosciences, 15, 2525-2549. Doi https://doi.org/10.5194/bg-15-2525-2018.

    Article  Google Scholar 

  • Plueger, W.L., P.M Herzig, K-P Becker, G. Deissmann, D. Schops, J. Lange, A. Jenisch, S. Ladage, H.H. Richnow, T. Schultz, W. Michaelis 1990. Dicovery of the hydrothermal fields at the Central Indian Ridge, Marine mining, 9:73.

    Google Scholar 

  • Radziejewska, T 1997. “Immediate Responses of Benthic Meio- and Megafauna to Disturbance Caused by Polymetallic Nodule Miner Simulator,” Proc Int Symp Environmental Studies for Deep-sea Mining, Metal Mining Agency of Japan, Tokyo, Japan, pp 223-236.

    Google Scholar 

  • Radzeijewska, T., K. Mianowicz, T. Abramowski, 2022. Natural variability versus anthropogenic impacts on deep-sea ecosystems of importance for deep-sea mining. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG (pp. 281–311)

    Google Scholar 

  • Rahn, M. 2016. Deliverable 3.11: Deposit models. Public report submitted to European Commission within the 7th framework programme (GA no. 604500). Available at: http.//www.bluemining.eu/downloads/.

  • Rao, V.P., B.N. Nath 1988. Nature, distribution and origin of clay minerals in grain size fractions of sediments from manganese nodule field, Central Indian Ocean Basin. Indian Journal Marine Sciences, 17: 202-207.

    Google Scholar 

  • Roark, E.B., Guilderson, T.P., Dunbar, R.B. and Ingram, B.L. (2006). Radiocarbon- based ages and growth rates of Hawaiian deep-sea corals. Mar. Ecol.Prog. Ser., 327, 1–14.

    Google Scholar 

  • Rogers, A.D. (1999) The biology of Lopheliapertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. International Review of Hydrobiology 84, 315−406.

    Google Scholar 

  • Rogers, A.D.; Baco, A.; Griffiths, H.; Hart, T.; Hall-Spencer, J.M. (2007) Corals on seamounts. In Seamounts: Ecology, Fisheries and Conservation (Pitcher, T.J., Morato, T., Hart, P.J.B., Clark, M.R., Haggan, N. Santos, R.S. (eds)). Blackwell Fisheries and Aquatic Resources Series 12 Blackwell Publishing, Oxford, 141–169.

    Google Scholar 

  • Rogers, A.D., Tyler, P.A., Connelly, D.P., Copley, J.T., James, R., et al. (2012) The discovery of new deep-sea hydrothermal vent communities in the Southern Ocean and implications for biogeography. PLoSBiol 10(1): e1001234. doi:https://doi.org/10.1371/journal.pbio.1001234.

    Article  Google Scholar 

  • Rolinski, S., Segschneider, J., and Sundermann J. (2001) Long-term propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations. Deep-Sea Res. II 48, 3469–3485. https://doi.org/10.1016/S0967-0645(01)00053-4.

    Article  Google Scholar 

  • Rona, P.A. 1988. Hydrothermal mineralisation at oceanic ridges. Can. Min, 26:431.

    Google Scholar 

  • Ruhlman, C., U. Barckhausen, S. Ladage, L. Reinhardt, M. Wiedicke (eds.) 2009. Exploration for polymetallic nodules in German license area. International Society for Offshore and Polar Engineers (Chennai, India).

    Google Scholar 

  • Schriever, G, Ahnert, A; Borowski, C, and Thiel, H. 1997. “Results of the Large Scale Deep-sea Impact Study DISCOL during Eight Years of Investigation,” Proc Int Symp Environmental Studies for Deep-sea Mining, Metal Mining Agency of Japan, Tokyo, Japan, pp 197-208.

    Google Scholar 

  • Sen, P.K., 2022. Exploring the use of renewable resources for processing of deep-sea minerals. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG (pp. 219–262).

    Google Scholar 

  • Sharma, R, and Nath, B.N 1997. “Benthic Disturbance and Monitoring Experiment in Central Indian Ocean Basin,” Proc 2nd ISOPE Ocean Mining Symp, Seoul, Korea, ISOPE, pp 146-153.

    Google Scholar 

  • Sharma, R, Nath, B.N., Parthiban, G., Sankar, S.J. 2001. Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining. Deep-sea Research II, 48, 3363-3380.

    Google Scholar 

  • Sharma, R. et al. 2007. Do natural changes mask artificial impacts on benthic ecosystem over a period of time? Proceedings of Underwater mining institute, Tokyo, Japan, 15-20 October 2007)

    Google Scholar 

  • Sharma R. (2017a). Assessment of distribution characteristics of polymetallic nodules and their implications on deep-sea mining. In: Deep-sea mining: Resource potential, technical and environmental considerations (Ed. R. Sharma), Springer International Publishing AG, pp. 229-256.

    Google Scholar 

  • Sharma R. (2017b). Deep-sea mining: Current status and future considerations. In: Deep-sea mining: Resource potential, technical and environmental considerations (Ed. R. Sharma), Springer International Publishing AG, pp. 3-22.

    Google Scholar 

  • Sharma R. (2017c). Development of environmental management plan for deep-sea mining. In: Deep-sea mining: Resource potential, technical and environmental considerations (Ed. R. Sharma), Springer International Publishing AG, pp. 483-506.

    Google Scholar 

  • Sharma, R, Smith, S. (2019). Deep-sea mining and environment - An introduction. In: Sharma, R. (Ed.) Deep-sea mining and environment – impacts, consequences and management. Springer International Publishers AG, 3-22.

    Google Scholar 

  • Sharma, R, Mustafina, F, Cherkashov C., 2019. Review of mining rates, environmental impacts, metal values and investments for polymetallic nodules mining. In: Sharma, R. (Ed.) Deep-sea mining and environment – impacts, consequences and management. Springer International Publishers AG, 519-546.

    Google Scholar 

  • Shirayama, Y 1999. “Biological Results of JET Project: an Overview,” Proc 3rd ISOPE Ocean Mining Symp, Goa, India, ISOPE, pp 185-190.

    Google Scholar 

  • Siddiquie, H. N., D. R. Das Gupta, N. R. Sen Gupta, P. C. Shrivastava, T. K. Mallik. 1978. Manganese-Iron nodules from the Indian Ocean. Ind. J. Mar. Sc. 7:239-253.

    Google Scholar 

  • Singh, T.R.P., Sudhakar, M., 2015. Estimating potential of additional mine-sites for polymetallic nodules in Pacific and Indian Oceans. International journal of earth sciences and engineering, v.8: 1938-1941

    Google Scholar 

  • Sonter, L., D. Herrera, D. Barrett, G. Galford, C. Moran, B. Soares-Filho, 2017. Mining drives extensive deforestation in the Brazilian Amazon. Nature Communications, 8(1).

    Google Scholar 

  • SPC, 2013. Deep-sea minerals and the green economy. In: E. Baker, Y Beaudoin (Eds.). Secretariat of the Pacific Community, Vol. 2.

    Google Scholar 

  • Suzuki, K., K. Yoshida, 2019. Mining in hydrothermal vent fluids: predicting and minimizing impacts on the ecosystems with the use of mathematical modeling framework. In: Sharma, R. (Ed.) Deep-sea mining and environment – impacts, consequences and management. Springer International Publishers AG, 231-254.

    Google Scholar 

  • Takaya Yutaro, Yasukawa Kazutaka, Kawasaki Takehiro, Fujinaga Koichiro, Ohta Junichiro, Usui Yoichi, Nakamura Kentaro, Kimura Jun-Ichi, Chang Qing, Hamada Morihisa, Dodbiba Gjergj, Nozaki Tatsuo, Iijima Koichi, Morisawa Tomohiro, Kuwahara Takuma, Ishida Yasuyuki, Ichimura Takao, Kitazume Masaki, Fujita Toyohisa, Kato Yasuhiro, 2018. The tremendous potential of deep-sea mud as a source of rare-earth elements. Scientific Reports, 8: 5763, https://doi.org/10.1038/s41598-018-23948-5.

    Article  Google Scholar 

  • Thijssen, T., G. P. Glasby, W. A. Schmitz, G. Friedrich, H. Kunzendorf, D. Muller, H. Richter. 1981. Reconnaissance survey of Manganese Nodules from the Northern Sector of the Peru Basin. Mar. Min. 2:385-428.

    Google Scholar 

  • Tilot, V., 2019. Assessment of deep-sea faunal communities – indicators of environmental impact. In: Sharma, R. (Ed.) Deep-sea mining and environment – impacts, consequences and management. Springer International Publishers AG, 147-190.

    Google Scholar 

  • Tilot, V. B. Guilloux, K. Willaert, C.Y. Mulalap, T. Bambridge, F. Gaulme, E. Kacenelenbogen, A.J. de Grissac, J. M. Navas, A. Dahl, 2022 Traditional and socio-ecological dimensions of seabed resource management and applicable legal frameworks in the Pacific Island States. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG (pp. 613–659).

    Google Scholar 

  • Tkatchenko, G, Radziejewska, T, Stoyanova, V, Modlitba, I, Parizek, A 1996. “Benthic Impact Experiment in the IOM Pioneer Area: Testing for Effects of Deep-sea Disturbance,” Int Seminar on Deep Sea-bed Mining Tech, China Ocean Mineral Resources R&D Assoc., Beijing, China, C55-C68.

    Google Scholar 

  • Trueblood, DD 1993. “US Cruise Report for BIE—II Cruise. NOAA Technical Memo OCRS 4, National Oceanic and Atmospheric Administration, Colorado, USA, pp 51

    Google Scholar 

  • Trueblood DD, Ozturgut E, Pilipchuk M, Gloumov IF, 1997. “The Echological Impacts of the Joint U.S.-Russian Benthic Impact Experiment. Proc. Int. Symp. Environmental Studies for Deep-sea Mining, Metal Mining Agency of Japan, Japan, 237-243.

    Google Scholar 

  • UNCLOS, 1982. UN Convention on Law of the Sea (https://www.un.org/depts/los/convention_agreements/texts/unclos/UNCLOS-TOC.htm)

  • UNOET, 1987. Delineation of mine sites and potential in different sea areas. London: UN Ocean Economics and Technology Branch and Graham & Trotman Limited. 27 pp.

    Google Scholar 

  • Usui, A., T. Moritani 1992. Manganese nodule deposits in the Central Pacific Basin: distribution, geochemistry and genesis. In: Keating BH and B.R. Bolton (Eds.) Geology and offshore mineral resources of the Central Pacific Basin, Earth Science series, Vol 14,Springer-Verlag, New York, 205-223.

    Google Scholar 

  • Usui A., K. Suzuki, 2022, Geological Characterization of Ferromanganese Crust Deposits in the NW Pacific Seamounts for Prudent Deep-sea Mining. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG (pp. 81–113).

    Google Scholar 

  • Van Dover, CL. (2011) Mining seafloor massive sulphides and biodiversity: What is at risk? ICES Journal of Marine Science, 68:341−348.

    Google Scholar 

  • Van Dover, C.L., (2014) Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: A review, Marine Environmental Research 102, 59-72.

    Google Scholar 

  • Van Nijen, K, S.V. Passel, D. Squires, 2018. A stochastic techno-economic assessment of seabed mining of polymetallic nodules in the Clarion Clipperton Fracture Zone. Marine policy, vol. 95, 132-141.

    Google Scholar 

  • Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M. (2016). Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Scientific Reports, 6, 26808. https://doi.org/10.1038/srep26808.

  • Verlaan, P. 2022. Achieving Effective Seabed Mining Regulation and Management: A Missing Link. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG (pp. 581–592).

    Google Scholar 

  • Volkmann, S.E., Lehnen, F. 2018. Production key figures for planning the mining of manganese nodules. Marine Georesources and Geotechnology, 36: 360-375. https://doi.org/10.1080/1064119X.2017.1319448

    Article  Google Scholar 

  • Volkmann, S.E., Kuhn, T., Lehnen, F. 2018. A comprehensive approach for a techno-economic assessment of nodule mining in the deep sea. Mineral economics, 31:319-336. https://doi.org/10.1007/s13563-018-0143-1.

    Article  Google Scholar 

  • Washburn, T.W., P.J. Turner, J.M. Durden, D.O.B. Jones, P. Weaver, C.L. Van Dover, 2019. Ecological risk assessment of deep-sea mining. Ocean and Coastal Management, 176, 24-39.

    Google Scholar 

  • Weaver, P.P.E., Billett, D.S.M. and Van Dover, C.L. (2018) Environmental risks of deep-sea mining. In Handbook on Marine Environment Protection (Science, impacts and sustainable management). Eds Markus Salomon and Till Markus. Publisher Springer, 215-245

    Google Scholar 

  • Weaver, P.P.E., Billet, D.S.M. 2019. Environmental impacts of nodule, crust and sulphide mining – an overview. In: Sharma, R. (Ed.) Deep-sea mining and environment – impacts, consequences and management. Springer International Publishers AG, 27-62.

    Google Scholar 

  • Wilde, D. 2022, An evaluation of the payment regime for deep seabed polymetallic nodule mining in the Area. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG (pp. 527–557).

    Google Scholar 

  • Willaert, K. 2022. Safeguarding the interests of developing states within the context of deep-sea mining in the Area. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG (pp. 661–680).

    Google Scholar 

  • Yamagashi, T., S. Ota, H. Yamaguchi, H. Koshikawa, N. Tatarazako, H. Yamamoto, M. Kawachi, 2019. Ecotoxicological bioassay using marine algae for deep-sea mining. In: Sharma, R. (Ed.) Deep-sea mining and environment – impacts, consequences and management. Springer International Publishers AG, 255-271.

    Google Scholar 

  • Yamazaki, T., 2022. Analysis of different models for improving the feasibility of deep-sea mining. In: Sharma, R. (Ed.) Perspectives on Deep-sea mining – Sustainability, Technology, Environmental Policy and Management, Springer International Publishers AG (pp. 425–463).

    Google Scholar 

  • Yamazaki, T., Sharma, R., 2001. Estimation of sediment properties during benthic impact experiments. Marine Georesources and Geotechnology, 19: 269-289.

    Google Scholar 

  • Zepf, V., Simmons J., Reller A., Ashfield M., Rennie C., 2014. Materials critical to the energy industry. An introduction. 2nd edition, British Petroleum, pp. 94.

    Google Scholar 

Websites Accessed

  • en.wikipedi.org/wiki/HMSChallenger. Information on HMS Challenger expedition (Accessed 29 May 2021).

    Google Scholar 

  • https://www.britanica.com – Areas of Pacific, Atlantic and Indian Oceans (Accessed 29 May 2021)

    Google Scholar 

  • https://deep.green.com (Accessed 23 April 2021)

    Google Scholar 

  • https://www.usgs.gov. Accessed September 2018

    Google Scholar 

  • https://www.isa.org.jm accessed on 29 April 2021

    Google Scholar 

  • http://dsmobserver.org/2017/07/nautilus-png-submerged-trials (Accessed 19 July 2017)

    Google Scholar 

  • http://www.deme-group.com/news/metal-rich-nodules-collected-seabed-during-important-technology-trial (Accessed 24 April 2021)

    Google Scholar 

  • https://www.lme.com - Average metal prices for Ni, Cu, Co (Accessed 6 May 2021)

    Google Scholar 

  • https://www.usgs.gov

    Google Scholar 

  • www.usinflationcalculator.com - Recalculated cumulative inflation rate for 2021 (Accessed 6 May 2021)

    Google Scholar 

  • https://chinadialogueocean.net/10891-china-deep-sea-exploration-comra/ (accessed 24 May 2021)

    Google Scholar 

  • http://www.bluemining.eu/project/ Blue Mining: breakthrough solutions for sustainable deep sea mining (Accessed 6 May 2021)

    Google Scholar 

  • https://miningimpact.geomar.de/first-project-phase-2015-2017. Accessed 29 May 2021

    Google Scholar 

  • http:/jpi-oceans.eu/minimgimpact2. Accessed 24 April 2021

    Google Scholar 

Download references

Acknowledgements

Prof. Akira Usui and JAMSTEC are thanked for making the seabed photographs available, and the International Seabed Authority is thanked for permissions for use of maps of exploration areas for deep-sea minerals in different oceans for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R. (2022). Approach Towards Deep-Sea Mining: Current Status and Future Prospects. In: Sharma, R. (eds) Perspectives on Deep-Sea Mining. Springer, Cham. https://doi.org/10.1007/978-3-030-87982-2_2

Download citation

Publish with us

Policies and ethics