Skip to main content

Natural Variability Versus Anthropogenic Impacts on Deep-Sea Ecosystems of Importance for Deep-Sea Mining

  • Chapter
  • First Online:
Perspectives on Deep-Sea Mining

Abstract

Deep-sea ecosystems (DSE) undergo changes which result from natural variability and from human activities, with frequent feedbacks between these two dimensions. Given the seriousness and costs of future deep-sea mining (DSM), a substantial human intervention into the natural environment of the deep-sea, this intervention should be successful (providing the benefits intended), sustainable (providing the benefits in a long term) and responsible (causing the least possible disruption of the deep-sea environment and its communities). The success, sustainability and responsibility of DSM require knowledge of conditions under which the intervention will be carried out as well as the ability to predict the severity of mining effects. The present knowledge on the status and natural variability of ecosystems to be impacted by future mining operations, particularly polymetallic nodule fields on abyssal plains and polymetallic sulphides in hydrothermal vent fields on mid-ocean ridges, is severely limited, as is knowledge on possible consequences of the impacts caused by DSM and rates of recovery from it. We present a brief overview of time-series studies carried out to date in the parts of DSE targeted for future mining operations and discuss the two major dimensions of DSE changes, natural and anthropogenic. We conclude by reiterating the need for intensified, high-resolution observation system(s) of DSE and the necessity of having appropriately resolved time-series of data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowski T, Stoyanova V, Handke J (2016) Numerical simulations of sediment plume and its dispersal during deep sea nodules mining operations. In: Abramowski T (ed) Deep sea mining value chain: organization, technology and development. Interoceanmetal Joint Organization, Szczecin, pp 89–103

    Google Scholar 

  • Aguzzi J, Chatzievangelou D, Company JB, Thomsen L, Marini S, Bonofiglio F, Juanes F, Rountree R, Berry A, Chumbinho R, Lordan C, Doyle D, del Rio J, Navarro J, De Leo FC, Bahamon N, García JA, Danovaro PR, Francescangeli M, Lopez-Vazquez V, Gaughan P (2020) The potential of video imagery from worldwide cabled observatory networks to provide information supporting fish-stock and biodiversity assessment. ICES Journal of Marine Science, https://doi.org/10.1093/icesjms/fsaa169

  • Aleynik D, Inall ME, Dale A, Vink A (2017) Impact of remotely generated eddies on plume dispersion at abyssal mining sites in the Pacific. Scientific Reports 7:16959 https://doi.org/10.1038/s41598-017-16912-2

    Article  Google Scholar 

  • Ardron JA, Simon-Lledó E, Jones DOB, Ruhl HA (2019) Detecting the Effects of Deep-Seabed Nodule Mining: Simulations Using Megafaunal Data From the Clarion-Clipperton Zone. Frontiers in Marine Science 6:604 https://doi.org/10.3389/fmars.2019.00604

    Article  Google Scholar 

  • Atmanand MA, Ramadsss GA (2017) Concepts of Deep-Sea Mining Technologies. In: Sharma R (ed) Deep-Sea Mining. Resource Potential, Technical and Environmental Considerations. Springer, pp 305–343

    Google Scholar 

  • Baker ET, Lavelle JW, Feely RA, Massoth GJ, Walker SL, Lupton JE (1989) Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge, JGR Solid Earth 94:9237–9250. https://doi.org/10.1029/JB094iB07p09237

    Article  Google Scholar 

  • Beaulieu SE, Baker ET, German CR, Maffei A (2013) An authoritative global database for active submarine hydrothermal vent fields. Geochemistry Geophysics Geosystems 14:4892–4905 https://doi.org/10.1002/2013GC004998.

    Article  Google Scholar 

  • Beaulieu SE, Baker ET, German CR (2015) Where are the undiscovered hydrothermal vents on oceanic spreading ridges? Deep Sea Research Part II 121:202–212. https://doi.org/10.1016/j.dsr2.2015.05.001

  • Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755 https://doi.org/10.1038/nature05317

    Article  Google Scholar 

  • Belkin IM, Andersson PS, Langhof J (2021) On the discovery of ferromanganese nodules in the World Ocean. Deep Sea Research Part I (in press), 103589. https://doi.org/10.1016/j.dsr.2021.103589

  • Billett DSM, Bett BJ, Rice AL, Thurston MH, Galéron J, Sibuet M, Wolff GA (2001) Long-term change in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic). Progress in Oceanography 50:325–348. https://doi.org/10.1016/S0079-6611(01)00060-X

  • Billett DSM, Bett BJ, Reid WDK, Boorman B, Priede IG (2010) Long-term change in the abyssal NE Atlantic: The ‘Amperima Event’ revisited. Deep-Sea Research Part II, 57:1406–1417

    Article  Google Scholar 

  • Billett DSM, Jones DOB, Weaver PPE (2019) Improving environmental management practices in deep-sea mining. In: Sharma R (ed) Environmental Issues of Deep-Sea Mining. Springer, pp 403–446.

    Chapter  Google Scholar 

  • Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder VA, Hallberg R, Hilmi N, Jiao N, Karim MS, Levin L, O’Donoghue S, Purca Cuicapusa SR, Rinkevich B, Suga T, Tagliabue A, Williamson P (2019): Changing Ocean, Marine Ecosystems, and Dependent Communities. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. In press.

    Google Scholar 

  • Birchenough SNR, Reiss H, Degraer S, Mieszkowska N, Borja Á, Buhl-Mortensen L, Braeckman U, Craeymeersch J, De Mese I, Kerckhof F, Kröncke I, Parra S, Rabaut M, Schröder A, Van Colen C, Van Hoey G, Vincx M, Wätjen K (2015) Climate change and marine benthos: a review of existing research and future directions in the North Atlantic. WIREs Climate Change 2015. https://doi.org/10.1002/wcc.330

  • Bluhm H (2001) Re-establishment of an abyssal megabenthic community after experimental physical disturbance of the seafloor. Deep Sea Research Part II: Topical Studies in Oceanography 48:3841–3868. https://doi.org/10.1016/S0967-0645(01)00070-4

  • Borja A, Elliott M, Andersen JH, Berg T, Carstensen J, Halpern BS, Heiskanen A-S, Korpinen S., Stewart Lowndes JS, Martin G, Rodriguez-Expeleta N (2016) Overview of Integrative Assessment of Marine Systems: The Ecosystem Approach in Practice. Frontiers in Marine Science 3: Article 20. https://doi.org/10.3389/fmars.2016.00020

  • Chaparro-Pedraza PC (2021) Fast environmental change and eco-evolutionary feedbacks can drive regime shifts in ecosystems before tipping points are crossed. Proceedings of the Royal Society B 288: 20211192. https://doi.org/10.6984/m9.figshare.c.5494697

  • Cherkashov G (2017) Seafloor Massive Sulfide Deposits: Distribution and Prospecting. In: Sharma R. (ed.), Deep-Sea Mining. Resource Potential, Technical and Environmental Considerations. Springer, pp 143–164.

    Chapter  Google Scholar 

  • Childs J (2019) Greening the blue? Corporate strategies for legitimising deep sea mining Political Geography 74:102060 https://doi.org/10.1016/j.polgeo.2019.102060

  • Clark MR (2009) Deep-sea seamount fisheries: a review of global status and future prospects. Latin American Journal of Aquatic Research 37: 501–512

    Article  Google Scholar 

  • Clark MR, Althaus F, Schlacher TA, Williams A, Bowden DA, Rowden AA (2016) The impacts of deep-sea fisheries on benthic communities: a review. ICES Journal of Marine Science 73(Supplement 1): i51–i69. https://doi.org/10.1093/icesjms/fsv123

  • Clark MR, Durden JM, Christiansen S. (2019) Environmental Impact Assessments for deep-sea mining: Can we improve their future effectiveness? Marine Policy 114:103363. https://doi.org/10.1016/j.marpol.2018.11.026

  • Cloern JE, Abreu PC, Carstensen J, Chauvaud L, Elmgren R, Grall J, Greenikng H, Johansson JOR, Kahru M, Sherwood ET, Xu J, Yin K (2016) Human activities and climate variability drive fast-paced change across the world’s estuarine–coastal ecosystems. Global Change Biology 22: 513–529. https://doi.org/10.1111/gcb.13059

    Article  Google Scholar 

  • Connelly DP, Copley JT, Murton BJ, Stansfield K, Tyler PA, German CR, Van Dover CL, Amon D, Furlong M, Grindlay N, Hayman N, Hühnerbach V, Judge M, Le Bas T, McPhail S, Meier A, Nakamura K-I, Nye V, Pebody M, Pedersen RB, Plouviez S, Sands C, Searle RC, Stevenson S, Taws S, Wilcox S (2012) Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre. Nature Communications 3:620 https://doi.org/10.1038/ncomms1636

    Article  Google Scholar 

  • Copley JTP, Jorgensen PBK, Sohn RA (2007) Assessment of decadal-scale ecological change at a deep Mid-Atlantic hydrothermal vent and reproductive time-series in the shrimp Rimicaris exoculata. Journal of the Marine Biological Association of the United Kingdom 87:859–867 https://doi.org/10.1017/S0025315407056512

    Article  Google Scholar 

  • Cuvelier D, Sarrazin J, Colaço A, Copley JT, Glover AD, Tyler PA, Serrão Santos R, Desbruyères D (2011) Community dynamics over 14 years at the Eiffel Tower hydrothermal edifice on the Mid-Atlantic Ridge. Limnology and Oceanography 56:1624–1640 https://doi.org/10.4319/lo.2011.56.5.1624

    Article  Google Scholar 

  • Cuvelier D, Gollner S, Jones DOB, Kaiser S, Arbizu PM, Menzel L, Mestre NC, Morato T, Pham C, Pradillon F, Purser A, Raschka U, Sarrazin J, Simon-Lledó E, Stewart IM, Stuckas H, Sweetman AK, Colaço A (2018) Potential Mitigation and Restoration Actions in Ecosystems Impacted by Seabed Mining. Frontiers in Marine Science 5:467 https://doi.org/10.3389/fmars.2018.00467

    Article  Google Scholar 

  • Cuyvers L, Berry W, Gjerde K, Thiele T, Wilhem C (2018) Deep seabed mining: a rising environmental Gland, Switzerland: IUCN and Gallifrey Foundation. 74 pp.

    Google Scholar 

  • Danovaro R, Fanelli E, Aguzzi J, Billett D, Carugati L, Corinaldesi C, Dell’Anno A, Gjerde K, Jamieson AJ, Kark S, McClain C, Levin L, Levin N, Ramirez-Llodra E, Ruhl H, Smith CR, Snelgrove PVR, Thomsen L, Van Dover CL, Yasuhara M (2020) Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nature Ecology & Evolution 4:181–192. https://doi.org/10.1038/s41559-019-1091-z

  • de Jonge DSW, Tratmann T, Linse L, Vanreusel A, Purse A, Marcon Y, Rodrigues CF, Ravara A, Esquete P, Cunha MR, Simon-Lledo E, van Breygel PM, Sweetman AK, Soetaert K, van Oevelen D (2020) Abyssal food-web model indicates faunal carbon flow recovery and impaired microbial loop 26 years after a sediment disturbance experiment. Progress in Oceanography 189:102446. https://doi.org/10.1016/j.pocean.2020.102446

  • Desbruyères D (1998) Temporal variations in the vent communities on the East Pacific Rise and Galapagos Spreading Centre: a review of present knowledge. Cahiers de Biologie Marine 39:241–244

    Google Scholar 

  • Desprez M (2000) Physical and biological impact of marine aggregate extraction along the French coast of the Eastern English Channel: short-and long-term post-dredging restoration. ICES Journal of Marine Science 57:1428–1438

    Article  Google Scholar 

  • Doi H, Yasuhara M, Ushio M (2021) Causal analysis of the temperature impact on deep-sea biodiversity. Biological Letters 17:20200666. https://doi.org/10.1098/rsbl.2020.0666

  • Drazen JC, Baldwin RJ, Smith KL Jr (1998) Sediment community response to a temporally varying food supply at an abyssal station in the NE Pacific. Deep-Sea Research II 45:893–913

    Article  Google Scholar 

  • Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR, Capone DG, Cornell S, Dentener F, Galloway J, Ganeshram RS, Geider RJ, Jickells T, Kuypers MM, Langlois R, Liss PS, Liu S, Middelburg JJ, Moore CM, Nickovic S, Oschlies A, Pedersen T, Prospero J, Schlitzer R, Seitzinger S, Sorensen LL, Uematsu M, Ulloa O, Voss M, Ward B, Zamora L (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320:893–897. https://doi.org/10.1126/science.1150369

    Article  Google Scholar 

  • Durden JM, Bett BJ, Ruhl H (2020a) Subtle variation in abyssal terrain induces significant change in benthic megafaunal abundance, diversity, and community structure. Progress in Oceanography 186:102395. https://doi.org/10.1016/j.pocean.2020.102395

    Article  Google Scholar 

  • Durden JM, Bett BJ, Huffard C, Pebody C, Ruhl HA, Smith KL Jr (2020b) Response of deep-sea deposit-feeders to detrital inputs: A comparison of two abyssal time-series sites. Deep–Sea Research II 173: 104677. https://doi.org/10.1016/j.dsr2.2019.104677

    Article  Google Scholar 

  • FFI (2020) Fauna and Flora International An Assessment of the Risks and Impacts of Seabed Mining on Marine Ecosystems. FFI: Cambridge U.K.

    Google Scholar 

  • Galkin SV (2016) Structure of Hydrothermal Vent Communities. In: Demina LL, Galkin SV (eds), Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems. Springer, Handbooks for Environmental Chemistry 50:77–96. https://doi.org/10.1007/698_2015_5018

  • Gausepohl F, Hennke A, Schoening T, Köser K, Greinert J (2020) Scars in the abyss: reconstructing sequence, location and temporal change of the 78 plough tracks of the 1989 DISCOL deep-sea disturbance experiment in the Peru Basin. Biogeosciences 17:1463–1493. https://doi.org/10.5194/bg-17-1463-2020

    Article  Google Scholar 

  • Gebruk AV, Mironov AN (2006) Biogeografiya gidroterm Sredinno-Atlanticheskogo khrebta [Biogeography of Mid-Atlantic Ridge hydrothermal vents]. In: Vinogradov ME, Vereshchaka AL (eds), Ekosistemy Atlanticheskikh Gidroterm [Ecosystems of the Atlantic Hydrothermal Vents]. Nauka, Moskva pp 119–162

    Google Scholar 

  • Glover AG, Gooday AJ, Bailey DM, Billett DSM, Chevaldonné P, Colaço A, Copley J, Cuvelier D, Desbruyères D, Kalogeropoulou V, Klages M, Lampadariou N, Lejeusne C, Mestre NC, Paterson GLJ, Perez T, Ruhl H, Sarrazin J, Soltwedel T, Soto EH, Thatje S, Tselepides A, Van Gaever S, Vanreusel A (2010) Climatic and geological drivers of long-term temporal change in deep-sea ecosystems. Advances in Marine Biology 58:1–95 https://doi.org/10.1016/B978-0-12-381015-1.00001-0

    Article  Google Scholar 

  • Gollner S, Kaiser S, Menzel L, Jones DOB, Brown A, Mestre NC, van Oevelen D, Menot L, Colaço A, Canals M, Cuvelier D, Durden JM, Gebruk A, Egho GA, Haeckel M, Marcon Y, Mevenkamp L, Morato T, Pham CK, Purser A, Sanchez-Vidal A, Vanreusel A, Vink A, Arbizu PM (2017) Resilience of benthic deep-sea fauna to mining activities. Marine Environmental Research 129:76–101. https://doi.org/10.1016/j.marenvres.2017.04.010

    Article  Google Scholar 

  • Gooday AJ (2003) Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: Environmental influences on faunal characteristics. Advances in Marine Biology 46:1–90. https://doi.org/10.1016/S0065-2881(03)46002-1

    Article  Google Scholar 

  • Gooday AJ, Nomaki H, Kitazato H (2008) Modern deep-sea benthic foraminifera: a brief review of their morphology-based biodiversity and trophic diversity. Geological Society, London, Special Publications 303:97–119. https://doi.org/10.1144/SP303.8

  • Gooday AJ, Lejzerowicz F, Goineau A, Holzmann M, Kamenskaya O, Kitazato H, Lim S-C, Pawlowski J, Radziejewska T, Stachowska Z, Wawrzyniak-Wydrowska B (2021) The Biodiversity and Distribution of Abyssal Benthic Foraminifera and Their Possible Ecological Roles: A Synthesis Across the Clarion-Clipperton Zone. Frontiers in Marine Science 8:634726 https://doi.org/10.3389/fmars.2021.634726

    Article  Google Scholar 

  • Halpern BS, Fujita R (2013) Assumptions, challenges, and future directions in cumulative impact analysis. Ecosphere 4:131 https://doi.org/10.1890/ES13-00181.1

    Article  Google Scholar 

  • Hartman SE, Bett BJ, Durden JM, Henson SA, Iversen M, Jeffreys RM, Horton T, Lampitt R, Gates AR (2021) Enduring science: Three decades of observing the Northeast Atlantic from the Porcupine Abyssal Plain Sustained Observatory (PAP-SO). Progress in Oceanography 191:10250. https://doi.org/10.1016/j.pocean.2020.102508

    Article  Google Scholar 

  • Hauton C, Brown A, Thatje S, Mestre NC, Bebianno MJ, Martins I, Bettencourt R, Canals M, Sanchez-Vidal A, Shillito B, Ravaux J, Zbinden M, Duperron S, Mevenkamp L, Vanreusel A, Gambi C, Dell’Anno A, Danovaro R, Gunn V, Weaver P (2017) Identifying toxic impacts of metals potentially released during deep-sea mining—a synthesis of the challenges to quantifying risk. Frontiers in Marine Science 4:368. https://doi.org/10.3389/fmars.2017.00368

    Article  Google Scholar 

  • Henson S, Lampitt R, Johns D (2012) Variability in phytoplankton community structure in response to the North Atlantic Oscillation and implications for organic carbon flux. Limnology and Oceanography 57:1591–1601 https://doi.org/10.4319/lo.2012.57.6.1591

    Article  Google Scholar 

  • Hess S, Kuhnt W (1996) Deep-sea benthic foraminiferal recolonization of the 1991 Mt. Pinatubo ash layer in the South China Sea. Marine Micropaleontology 28:171–197. https://doi.org/10.1016/0377-8398(95)00080-1

    Article  Google Scholar 

  • Hess S, Kuhnt W, Hill S, Kaminski MA, Holbourn A, de Leon M (2001) Monitoring the recolonization of the Mt Pinatubo 1991 ash layer by benthic foraminifera. Marine Micropaleontology 43:119–142

    Article  Google Scholar 

  • Howell KL, Hilário A, Allcock AL, Bailey DM, Baker M, Clark MR, Colaço A, Copley J, Cordes EE, Danovaro R, Dissanayake A, Escobar E, Esquete P, Gallagher AJ, Gates AR, Gaudron SM, German CR, Gjerde KM, Higgs ND, Le Bris N, Levin LA, Manea E, McClain C, Menot L, Mestre NC, Metaxas A, Milligan RJ, Muthumbi AWN, Narayanaswamy BE, Ramalho SP, Ramirez-Llodra E, Robson LM, Rogers AD, Sellanes J, Sigwart JD, Sink K, Snelgrove PVR, Stefanoudis PV, Sumida PY, Taylor ML, Thurber AR, Vieira RP, Watanabe HK, Woodall LC, Xavier JR (2020) A Blueprint for an Inclusive, Global Deep-Sea Ocean Decade Field Program. Frontiers in Marine Science 7:584861 https://doi.org/10.3389/fmars.2020.584861

    Article  Google Scholar 

  • Hurrell JW, Desel C (2009) North Atlantic climate variability: The role of the North Atlantic Oscillation. Journal of Marine Systems 78: 28–41 https://doi.org/10.1016/j.jmarsys.2008.11.026

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Visbeck M (2001) The North Atlantic Oscillation. Science 291: 605–604

    Article  Google Scholar 

  • Hyun J-H, Kim K-H, Jung H-S, Lee K-Y (1998). Potential environmental impact of deep seabed manganese nodule mining on the Synechococcus (cyanobacteria) in the northeast equatorial Pacific: effect of bottom water-sediment slurry. Marine Georesour and Geotechnology 16:133–143

    Article  Google Scholar 

  • Ingels J, Vanreusel A, Pape E, Pasotti F, Lacheriotou L, Martínez Arbizu P, Sørensen MV, Edgcomb VP, Sharma J, Sánchez N, Homoky WB, Woulds C, Leduc D, Gooday AJ, Pawlowski J, Dolan JR, Schratzberger M, Gollner S, Schoenle A, Arndt H, Zeppilli D(2021) Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation. Nature Ecology & Evolution 5:27–29. https://doi.org/10.1038/s41559-020-01335-6

    Article  Google Scholar 

  • Ingole B, Koslow JA (2005) Deep-sea ecosystems of the Indian Ocean. Indian Journal of Marine Sciences 34:27–34

    Google Scholar 

  • ISA (2013) Decision of the Council of the International Seabed Authority relating to amendments to the Regulations on Prospecting and Exploration for Polymetallic Nodules in the Area and related matters.ISBA/19/C/17

    Google Scholar 

  • ISA (2020a) Recommendations on environmental baseline data collections. ISBA/19/LTC/8,2013; ISBA/25/LTC/6/Rev.1 2020; OSBA/25/LTC/6/Rev.1/Corr.1, 2020

    Google Scholar 

  • ISA (2020b) Draft regulations on exploitation of mineral resources in the Area (ISBA/25/C/WP.1)

    Google Scholar 

  • Jankowski JA, Malcherek A, Zielke W (1996) Numerical modelling of the deep-sea mining. Journal of Geophysical Research 101(C2):3545–3560

    Article  Google Scholar 

  • Jones DOB, Kaiser S, Sweetman AK, Smith CR, Menot L, Vink A, Trueblood D, Greinert J, Billett DSM, Martínez Arbizu P, Radziejewska T, Singh R, Ingole B, Stratmann T, Simon-Lledó E, Durden J M, Clark MR (2017) Biological responses todisturbance from simulated deep-sea polymetallic nodule mining. PLoS One 12:e0171750. https://doi.org/10.1371/journal.pone.0171750

    Article  Google Scholar 

  • Jones DOB, Ardron JA, Colaço A, Durden JM (2020) Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining. Marine Policy 118:103312. https://doi.org/10.1016/j.marpol.2018.10.025

    Article  Google Scholar 

  • Jumars PA (1982) Limits in Predicting and Detecting Benthic Community Responses to Manganese Nodule Mining. Marine Mining 3:213–229

    Google Scholar 

  • Kaikkonen L, Venesjärvi R, Nygård H, Kuikka S (2018) Assessing the impacts of seabed mineral extraction in the deep sea and coastal marine environments. Current methods and recommendations for environmental risk assessment. Marine Pollution Bulletin 135:1183–1197. https://doi.org/10.1016/j.marpolbul.2018.08.055

  • Karl DM, Letelier RM, Bidigare RR, Bjorkman KM, Church MJ, Dore JE, White AE (2021) Seasonal-to-decadal scale variability in primary production and particulate matter export at Station ALOHA. Progress in Oceanography 195:102563 https://doi.org/10.1016/j.pocean.2021.102563

    Article  Google Scholar 

  • Khripounoff A, Caprais J-C, Crassous P, Etoubleau JI (2006) Geochemical and biological recovery of the disturbed seafloor in polymetallic nodule fields of the Clipperton-Clarion Fracture Zone (CCFZ) at 5,000-m depth. Limnology and Oceanography 51:2033–2041

    Article  Google Scholar 

  • Kim I-N, Lee K, Gruber N, Karl DM, Bullister JL, Yang S, Kim T-W (2014) Increasing anthropogenic nitrogen in the North Pacific Ocean. Science 346: 1102–1106. https://doi.org/10.1126/science.1258396

    Article  Google Scholar 

  • Koschinsky A, Borowski Ch, Halbach P (2003) Reactions of the Heavy Metal Cycle to Industrial Activities in the Deep Sea: An Ecological Assessment. International Review of Hydrobiology 88:102–127. https://doi.org/10.1002/iroh.200390000

    Article  Google Scholar 

  • Kuhn T, Wegorzewski A, Rühlemann C, Vink A (2017) Composition, Formation, and Occurrence of Polymetallic Nodules. In: Sharma R (ed), Deep-Sea Mining. Resource Potential, Technical and Environmental Considerations. Springer, pp 23–63.

    Chapter  Google Scholar 

  • Kulkarni CS, Haley PJ, Lermusiaux PF, Dutt A, Gupta A, Mirabito C, Subramani DN, Jana S, Ali WH, Peacock T, Royo CM, Rzeznik A, Supekar A (2018) Real-time sediment plume modeling in the Southern California bight. OCEANS 2018 MTS/IEEE Charleston pp 1–10. https://doi.org/10.1109/OCEANS.2018.8653642.

  • Lampitt RS, Salter I, de Cuevas BA, Hartman S, Larkin KE, Pebody CA (2010) Long-term variability of downward particle flux in the deep northeast Atlantic: Causes and trends. Deep Sea Research Part IIL Topical Studies in Oceanography 57:1346–1361. https://doi.org/10.1016/j.dsr2.2010.01.011

    Article  Google Scholar 

  • Le JT, Levin LA, Carson RT (2017) Incorporating ecosystem services into environmental management of deep-seabed mining. Deep Sea Research Part II: Topical Studies in Oceanography 137:486–503. https://doi.org/10.1016/j.dsr2.2016.08.007

    Article  Google Scholar 

  • Levin LA, Le Bris N (2015) The deep ocean under climate change. Science 350:766–768. https://doi.org/10.1126/science.aad0126

    Article  Google Scholar 

  • Levin LA, Mengerink K, Gjerde KM, Rowden AA, Van Dover CL, Clark MR, Ramirez-Llodra, Currie B, Smith CR, Satoi KN, Galloi N, Sweetman AK, Lily H, Armstrong CW, Brider J (2016) Defining “serious harm” to the marine environment in the context of deep seabed MINING. Marine Policy 74:245–259. https://doi.org/10.1016/j.marpol.2016.09.032

    Article  Google Scholar 

  • Levin LA, Bett BJ, Gates AR, Heimbach P, Howe BM, Janssen F, McCurdy A, Ruhl HA, Snelgrove P, Stocks KI, Bailey D, Baumann-Pickering S, Beaverson C, Benfield MC, Booth DJ, Carreiro-Silva M, Colaço A, Eblé MC, Fowler AM, Gjerde KM, Jones DOB, Katsumata K, Kelley D, Le Bris N, Leonardi AP, Lejzerowicz F, Macreadie PI, McLean D, Meitz F, Morato T, Netburn A, Pawlowski J, Smith CR, Sun S, Uchida H, Vardaro MF, Venkatesan R, Weller RA (2019) Global Observing Needs in the Deep Ocean. Frontiers in Marine Science 6:241 https://doi.org/10.3389/fmars.2019.00241

    Article  Google Scholar 

  • Lim S-C, Wiklund H, Glover AG, Dahlgren TG, Tan K-S (2017) A new genus and species of abyssal sponge commonly encrusting polymetallic nodules in the Clarion-Clipperton Zone, East Pacific Ocean. Systematics and Biodiversity 15: 507–519 https://doi.org/10.1080/14772000.2017.1358218

    Article  Google Scholar 

  • McClain C, Schlacher TA (2015) On some hypotheses of diversity of animal life at great depths on the sea floor. Marine Ecology 36: 849–872 https://doi.org/10.1111/maec.12288

    Article  Google Scholar 

  • Mestre NC, Rocha TL, Canals M, Cardoso C, Danovaro R, Dell’Anno A, Gambi C, Regoli F, Sanchez-Vidal A, Bebianno MJ (2017). Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining. Environmental Pollution 228:169–178

    Article  Google Scholar 

  • Miljutin DM, Miljutina MA, Martínez Arbizu P, Galéron J (2011). Deep-sea nematode assemblage has not recovered 26 years after experimental mining of polymetallic nodules (Clarion-Clipperton Fracture Zone, Tropical Eastern Pacific). Deep Sea Research Part I: Oceanographic Research Papers 58:885–897 https://doi.org/10.1016/j.dsr.2011.06.003

    Article  Google Scholar 

  • Miller KA, Thompson KF, Johnston P, Santillo D (2018) An Overview of Seabed Mining Including the Current State of Development, Environmental Impacts, and Knowledge Gaps. Frontiers in Marine Science 4:418 https://doi.org/10.3389/fmars.2017.00418

    Article  Google Scholar 

  • Mullineaux LS, Mills SW, Le Bris N, Beaulieu SE, Sievert SM, Dykman LN (2020) Prolonged recovery time after eruptive disturbance of a deep-sea hydrothermal vent community. Proceedings of the Royal Society B 287:20202070. https://doi.org/10.1098/rspb.2020.2070

    Article  Google Scholar 

  • Niner HJ, Milligan B, Jones PJ, Styan CA (2017) Realising a vision of no net loss through marine biodiversity offsetting in Australia. Ocean & Coastal Management 148:22–30

    Article  Google Scholar 

  • Oebius HU, Becker H, Rolinski S, Jankowski JA (2001) Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining. Deep Sea Research Part II: Topical Studies in Oceanography 48:3453–3467. https://doi.org/10.1016/S0967-0645(01)00052-2

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686. https://doi.org/10.1038/nature04095

    Article  Google Scholar 

  • Petersen S, Krätschell A, Augustin N, Jamieson J, Hein JR, Hannington MD (2016) News from the seabed – Geological characteristics and resource potential of deep-sea mineral resources. Marine Policy 70:175–187. https://doi.org/10.1016/j.marpol.2016.03.012

    Article  Google Scholar 

  • Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ (2013) Global imprint of climate change on marine life. Nature Climate Change 3:919–925 https://doi.org/10.1038/NCLIMATE1958

    Article  Google Scholar 

  • Radziejewska T (2002) Responses of deep-sea meiobenthic communities to sediment disturbance simulating effects of polymetallic nodule mining. International Review of Hydrobiology 87:459–479

    Article  Google Scholar 

  • Radziejewska T. (2014) Meiobenthos in the Sub-equatorial Pacific Abyss. A Proxy in Anthropogenic Impact Evaluation. Springer, 105pp

    Google Scholar 

  • Ramirez-Llodra E, Brandt A, Danovaro R, De Mol B, Escobar E, German CR, Levin LA, Martínez Arbizu P, Menot L, Buhl-Mortensen P, Narayanaswamy BE, Smith CR, Tittensor DP, Tyler PA, Vanreusel A, Vecchione M (2010). Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7:2851–2899

    Article  Google Scholar 

  • Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Escobar E, Levin LA, Menot L, Rowden AA, Smith CR, Van Dover CL (2011) Man and the Last Great Wilderness: Human Impact on the Deep Sea. PLoS One 6:e22588 https://doi.org/10.1371/journal.pone.0022588

    Article  Google Scholar 

  • Riehl T, Wölfl A-C, Augustin N, Devey CW, Brandt A (2020) Discovery of widely available abyssal rock patches reveals overlooked habitat type and prompts rethinking deep-sea biodiversity. PNAS 117:15450–15459. https://doi.org/10.1073/pnas.1920706117

    Article  Google Scholar 

  • Rogers AD (2015) Environmental Change in the Deep Ocean. Annual Review of Environment and Resources 40:1–38. https://doi.org/10.1146/annurev-environ-102014-021415

    Article  Google Scholar 

  • Rogers AD, Tyler PA, Connelly DP, Copley JT, James R, Larter RD, Linse K, Mills RA, Naveira Garabato A, Pancost RD, Pearce DA, Polunin NVC, German CR, Shank T, Boersch-Supan PH, Alker BJ, Aquilina A, Bennett SA, Clarke A, Dinley RJJ, Graham AGC, Green DRH, Hawkes JA, Hepburn L, Hilario A, Huvenne VAI, Marsh L, Ramirez-Llodra E, Reid WDK, Roterman CN, Sweeting CH, Thatje S, Zwirglmaier K (2012) The Discovery of New Deep-Sea Hydrothermal Vent Communities in the Southern Ocean and Implications for Biogeography. PLoS Biology 10: e1001234. https://doi.org/10.1371/journal.pbio.1001234

    Article  Google Scholar 

  • Rolinski, S., Segschneider, J., Sündermann, J., 2001. Long-term propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations. Deep-Sea Research Part II Topical Studies in Oceanography 48:3469–3485

    Article  Google Scholar 

  • Rona P, Klinkhammer G, Nelsen T, Trefry JH, Elderfield H (1986) Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature 321:33–37. https://doi.org/10.1038/321033a0

    Article  Google Scholar 

  • Ruhl HA, Smith KL Jr (2004) Shifts in Deep-Sea Community Structure Linked to Climate and Food Supply. Science 305:513–515 https://doi.org/10.1126/science.1099759

    Article  Google Scholar 

  • Ruhl HA, Ellena JA, Smith KL Jr (2016) Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. PNAS 105:17006–17011. 10.1073/pnas.0803898105

    Google Scholar 

  • Sarrazin J, Juniper SK (1999) Biological characteristics of a hydrothermal edifice mosaic community. Marine Ecology Progress Series 185:1–19

    Article  Google Scholar 

  • Shank TM, Fornari DJ, Von Damm KL, Lilley MD, Haymon RM, Lutz RA (1998) Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50’N, East Pacific Rise). Deep-Sea Research II45: 465–515

    Google Scholar 

  • Shank T, Fornari D, Yoerger D, Humphris S, Bradley A, Hammond S, Lupton J, Scheirer D, Collier D, Collier R, Reysenbach A-L, Ding K, Seyfried W, Butterfield D, Olson E, Lilley M, Ward N, Eisen J (2003) Deep Submergence Synergy: Alvin and ABE Explore the Galapagos Rift at 86°W. EOS 84:421–425

    Article  Google Scholar 

  • Sharma R, Nath BN, Parthibann G, Sankar SJ (2001) Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining. Deep Sea Research Part II: Tropical Studies in Oceanography 48:3363–3380

    Article  Google Scholar 

  • Shimanaga M, Yanagi K (2016) The Ryukyu Trench may function asa “depocenter” for anthropogenic marine litter. Journal of Oceanography 21:3 https://doi.org/10.1007/s10872-016-0388-7

    Article  Google Scholar 

  • Simon-Lledó E, Bett BJ, Huvenne VAI, Köser K, Schoening T, Greinert J, Jones DOB (2019) Biological effects 26 years after simulated deep-sea mining. Scientific Reports 9: 8040. https://doi.org/10.1038/s41598-019-44492-w

    Article  Google Scholar 

  • Smith KL Jr, Ruhl HA, Bett BJ, Billett DSM, Lampitt RS, Kaufmann RS (2009) Climate, carbon cycling, and deep-ocean ecosystems. PNAS 106:19211–19218

    Article  Google Scholar 

  • Smith KL Jr, Ruhl HA, Huffard CL, Messié M, Kahru M (2018) Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. PNAS 115:12235–12240. https://doi.org/10.1073/pnas.1814559115

    Article  Google Scholar 

  • Smith KL Jr., Baldwin RJ, Ruhl HA, Kahru M, Mitchell BG, Kaufmann RS (2006) Climate effect on food supply to depths greater than 4,000 meters in the northeast Pacific. Limnology and Oceanography 51:166–176

    Article  Google Scholar 

  • Smith DK, Escartin J, Cannat M, Tolstoy M, Fox CG, Bohnenstiehl DR, Bazin S (2003) Spatial and temporal distribution of seismicity along the northern Mid-Atlantic Ridge (15o–35oN). Journal of Geophysical Research 108: B3, 2167 https://doi.org/10.1029/2002JB001964

    Article  Google Scholar 

  • Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Martinez Arbizu P. (2008) Abyssal food limitation, eco-system structure and climate change. Trends in Ecology and Evolution 23:518–528. https://doi.org/10.1016/j.tree.2008.05.002

    Article  Google Scholar 

  • Smith KL, Ruhl HA, Kahru M, Huffard CL, Sherman AD (2013) Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean. PNAS 110: 19838–19841. https://doi.org/10.1073/pnas.1315447110

    Article  Google Scholar 

  • Sparenberg O (2019) A historical perspective on deep-sea mining for manganese nodules, 1965–2019. The Extractive Industries and Society 6: 842–854. https://doi.org/10.1016/j.exis.2019.04.001

    Article  Google Scholar 

  • Spedicato A, Sánchez N, Pastor L, Menot L, Zeppilli D (2020) Meiofauna Community in Soft Sediments at TAG and Snake Pit Hydrothermal Vent Fields. Frontiers in Marine Science 7:200 https://doi.org/10.3389/fmars.2020.00200

    Article  Google Scholar 

  • Stephenson RL, Hobday AJ, Cvitanovic C, Alexander KA, Begge GA, Bustamante RH, Dunstan PK, Frusherb S, Fudge M, Fulton EA, Haward M, Macleod C, McDonald J, Nash KL, Ogier E, Pecla G, Plagányi ÉE, van Putten I, Smith T, Ward TM (2019) A practical framework for implementing and evaluating integrated management of marine activities. Ocean and Coastal Management 177:127–138. https://doi.org/10.1016/j.ocecoaman.2019.04.008

    Article  Google Scholar 

  • Stratmann T, Mevenkamp L, Sweetman AK, Vanreusel A, van Oevelen D (2018a) Has Phytodetritus Processing by an Abyssal Soft-Sediment Community Recovered 26 Years after an Experimental Disturbance? Frontiers in Marine Science 5:59. https://doi.org/10.3389/fmars.2018.00059

    Article  Google Scholar 

  • Stratmann T, Lins L, Purser A, Marcon Y, Rodrigues CF, Ravara A, Cunha MR, Simon-Lledó E, Jones DOB, Sweetman AK, Köser K, van Oevelen D (2018b) Abyssal plain faunal carbon flows remain depressed 26 years after a simulated deep-sea mining disturbance. Biogeosciences 15:4131–4145. https://doi.org/10.5194/bg-15-4131-2018

    Article  Google Scholar 

  • Sweetman AK, Thurber AR, Smith CR, Levin LA, Mora C, Wei C-L, Gooday AJ, Jones DOB, Rex M, Yasuhara M, Ingels J, Ruhl HA, Frieder CA, Danovaro R, Würzberg L, Baco A, Grupe BM, Pasulka A, Meyer KS, Dunlop KM, Henry L-A, Roberts JM (2017) Major impacts of climate change on deep-sea benthic ecosystems. Elementa Science of the Anthropocene 5:4. https://doi.org/10.1525/elementa.203

    Article  Google Scholar 

  • Tasser E, Niedrist G, Zimmermann P, Tappeiner U (2010) Species Richness in Space and Time as an Indicator of Human Activity and Ecological Change. In: Jørgensen SE, Xu F-L, Costanza R (eds), Handbook of Ecological Indicators for Assessment of Ecosystem Health, 2nd ed, CRC Press, Boca Raton, pp 149–170.

    Chapter  Google Scholar 

  • Thiel H, Pfannkuche O, Schriever G, Lochte K, Gooday AJ, Hemleben Ch, Mantoura RFG, Turley CM, Patching JW., Riemann F (1989) Phytodetritus on the Deep-Sea Floor in a Central Oceanic Region of the Northeast Atlantic. Biological Oceanography 6:203–239 https://doi.org/10.1080/01965581.1988.10749527

    Article  Google Scholar 

  • Thiel H, Schriever G, Ahnert A, Bluhm H, Borowski C, Vopel K (2001) The large-scale environmental impact experiment DISCOL - reflection and foresight. Deep-Sea Research Part II: Topical Studies in Oceanography 48:3869–3882

    Article  Google Scholar 

  • Tsurumi M, Tunnicliffe V (2001) Characteristics of a hydrothermal vent assemblage on a volcanically active segment of Juan de Fuca Ridge, northeast Pacific. Canadian Journal of Fisheries and Aquatic Sciences 58:530–542 https://doi.org/10.1139/cjfas-58-3-530

    Article  Google Scholar 

  • Tunnicliffe V (1991) The Biology of Hydrothermal Vents: Ecology and Evolution. Oceanography and Marine Biology An Annual Review 29: 319–407

    Google Scholar 

  • Van Dover CL (2000) The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press

    Book  Google Scholar 

  • Van Dover CL (2014) Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: A review. Marine Policy 102:59–72 https://doi.org/10.1016/j.marenvres.2014.03.008

    Article  Google Scholar 

  • Van Dover CL (2019) Inactive Sulfide Ecosystems in the Deep Sea: A Review. Frontiers in Marine Science 6:461 https://doi.org/10.3389/fmars.2019.00461

    Article  Google Scholar 

  • Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC (2002) Evolution and Biogeography of Deep-Sea Vent and Seep Invertebrates. Science 295:1253–1257 https://doi.org/10.1126/science.1067361

    Article  Google Scholar 

  • Van Dover CL, Colaço A, Collins PC, Croot P, Metaxas A, Murton BJ, Swaddling A, Boschen-Rose RE, Carlsson J, Cuyvers J, Cuyvers L, Fukushima T, Gartman A, Kennedy R, Kriete C, Mestre NC, Molodtsova T, Myhrvold A, Pelleter E, Popoola O, Qian P-Y, Sarrazin J, Sharma R, Suh YJ, Sylvan JB, Tao C, Tomczak M, Vermilye J (2020) Research is needed to inform environmental management of hydrothermally inactive and extinct polymetallic sulfide (PMS) deposits. Marine Policy 121:104183. https://doi.org/10.1016/j.marpol.2020.104183

    Article  Google Scholar 

  • Vanreusel A, Fonseca G, Danovaro R, da Silva MC, Esteves AM, Ferrero T, Gad G, Galtsova V, Gambi C, da Fonséca Genevois V, Ingels J, Ingole B, Lampadariou N, Merckx B, Miljutin D, Miljutina M, Muthumbi A, Netto N, Portnova D, Radziejewska T, Raes M, Tchesunov A, Vanaverbeke V, Van Gaever S, Venekey V, Nara Bezerra T, Flint H, Copley J, Pape E, Zeppilli D, Arbizu Martinez P, Galéron J (2010) The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity. Marine Ecology 31:6–20 https://doi.org/10.1111/j.1439-0485.2009.00352.x

    Article  Google Scholar 

  • Vanreusel A, Hilario A, Ribeiro PA, Menot L, Arbizu PM (2016) Threatened by mining, poly-metallic nodules are required to preserve abyssal epifauna. Scientific Reports 6: 26808. https://doi.org/10.1038/srep26808

    Article  Google Scholar 

  • Veillette J, Sarrazin J, Gooday AJ, Galéron J, Caprais J-C, Vangriesheim A, Étoubleau J, Christian JR, Juniper SK (2007) Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution. Deep Sea Research Part I: Oceanographic Research Papers 54:1912–1935. https://doi.org/10.1016/j.dsr.2007.06.011

    Article  Google Scholar 

  • Voosen P (2019) Scheme to mine the abyss gets sea trial. Science 363:1129–1130

    Article  Google Scholar 

  • Watling L, Guinotte J, Clark MR, Smith CR (2013) A proposed biogeography of the deep ocean floor. Progress in Oceanography 111:91–112. https://doi.org/10.1016/j.pocean.2012.11.003

    Article  Google Scholar 

  • Weaver PPE, Billett DSM, Van Dover CL (2018) Environmental Risks of Deep-sea Mining. In: Salomon M, Markus T (eds), Handbook on Marine Environment Protection. Science Impacts and Sustainable Management. Vol. 1, Springer, pp 215–245.

    Google Scholar 

  • Witkowski J, Penman DE, Bryłka K, Wade BS, Matting S, Harwood DM, Bohaty SM (2020) Early Paleogene biosiliceous sedimentation in the Atlantic Ocean: Testing the inorganic origin hypothesis for Paleocene and Eocene chert and porcellanite. Palaeogeography, Palaeoclimatology, Palaeoecology 556: 109896 https://doi.org/10.1016/j.palaeo.2020.109896

    Article  Google Scholar 

  • Yasuhara, M, Cronin TM (2008) Climatic influences on deep-sea ostracode (Crustacea) diversity for the last three million years. Ecology 89: S52–S65. https://doi.org/10.1890/07-1021.1

    Article  Google Scholar 

  • Yasuhara M, Cronin TM, de Menocal PB, Okahashi H, Linsley BK (2008) Abrupt climate change and collapse of deep-sea ecosystems. PNAS 105:1556–1560. https://doi.org/10.1073/pnas.0705486105

    Article  Google Scholar 

  • Yasuhara M, Hunt G, Cronin TM, Hokanishi N, Kawanahara H, Tsujimoto A, Ishitake M (2012) Climatic forcing of Quaternary deep-sea benthic communities in the North Pacific Ocean. Paleobiology 38:169–179. http://www.bioone.org/doi/full/10.1666/10068.1

  • Zawadzki D, Maciąg Ł, Abramowski T, McCartney K (2020) Fractionation Trends and Variability of Rare Earth Elements and Selected Critical Metals in Pelagic Sediment from Abyssal Basin of NE Pacific (Clarion−Clipperton Fracture Zone).Minerals 10:320 https://doi.org/10.3390/min10040320

    Article  Google Scholar 

Download references

Acknowledgments

TR acknowledges support provided by the Polish National Science Centre grant No. 2014/13/B/ST10/02996 and by the JPIOceansPilot Action “Ecological Effects of Deep-Sea Mining.” We appreciate the assistance of Dr. Lenaïck Menot of IFREMER (France) who directed us to IFREMER’s OCEANOTHEQUE. A big thank you to Marcel Czernik for the permission to use his artwork. We extend our warm thanks to Dr. Rahul Sharma for his encouragement and patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Radziejewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radziejewska, T., Mianowicz, K., Abramowski, T. (2022). Natural Variability Versus Anthropogenic Impacts on Deep-Sea Ecosystems of Importance for Deep-Sea Mining. In: Sharma, R. (eds) Perspectives on Deep-Sea Mining. Springer, Cham. https://doi.org/10.1007/978-3-030-87982-2_11

Download citation

Publish with us

Policies and ethics