Skip to main content

COVID-19 Pathophysiology and COVID-19-Induced Respiratory Failure

  • Chapter
  • First Online:
Mechanical Ventilation Amid the COVID-19 Pandemic

Abstract

SARS-CoV-2 has been particularly challenging to manage in the clinical setting due to the multi-organ pathophysiology that has been observed in affected patients. The binding to ACE2 receptors in the lungs has been shown as the primary mechanism to facilitate the transfer of COVID-19 between humans regardless of the symptomatic state. The virus can also increase the levels of pro-inflammatory mediators resulting in two well-documented systemic manifestations, cytokine storm and hyper-inflammatory syndrome. Given the multisystem progression which can be seen in individuals afflicted with COVID-19, there have been several risk factors which are associated with severe illness including chronic obstructive pulmonary disease, cerebrovascular disease, diabetes mellitus type II, and hypertension. While extensive research since the beginning of the pandemic has provided insight into the pathophysiology of COVID-19, there is still much to be learned. This chapter provides an overview of key concepts in the pathophysiology underlying COVID-19-induced multi-organ dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;172(9):577–82. https://doi.org/10.7326/M20-0504.

    Article  Google Scholar 

  2. Nelemans T, Kikkert M. Viral innate immune evasion and the pathogenesis of emerging RNA virus infections. Viruses. 2019;11:E961. https://doi.org/10.3390/v11100961.

    Article  Google Scholar 

  3. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38:4401–9. https://doi.org/10.12932/AP-200220-0772.

    Article  Google Scholar 

  4. Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID-19 and multiorgan failure: a narrative review on potential mechanisms. J Mol Histol. 2020;51(6):613–28. https://doi.org/10.1007/s10735-020-09915-3.

    Article  Google Scholar 

  5. Loganathan S, Kuppusamy M, Wankhar W, et al. Angiotensin-converting enzyme 2 (ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir Physiol Neurobiol. 2021;283:103548. https://doi.org/10.1016/j.resp.2020.103548.

    Article  Google Scholar 

  6. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–80. https://doi.org/10.1016/j.cell.2020.02.052

  7. Organization W.H. Coronavirus disease 2019 (COVID-19): situation report; 2020. p. 73.

    Google Scholar 

  8. Zarrilli G, Angerilli V, Businello G, et al. The immunopathological and histological landscape of COVID-19-mediated lung injury. Int J Mol Sci. 2021;22(2):974. https://doi.org/10.3390/ijms22020974.

    Article  Google Scholar 

  9. Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, Bikdeli B, Ahluwalia N, Ausiello JC, Wan EY, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26:1017–32. https://doi.org/10.1038/s41591-020-0968-3.

    Article  Google Scholar 

  10. Li G, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92:424–32. https://doi.org/10.1002/jmv.25685.

    Article  Google Scholar 

  11. Naqvi AAT, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim Biophys Acta Mol basis Dis. 1866;2020:165878. https://doi.org/10.1016/j.bbadis.2020.165878.

    Article  Google Scholar 

  12. Diaz JH. Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J Travel Med. 2020; https://doi.org/10.1093/jtm/taaa041.

  13. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4:1011–33. https://doi.org/10.3390/v4061011.

    Article  Google Scholar 

  14. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L, Chen H-D, Chen J, Luo Y, Guo H, Jiang R-D, Liu M-Q, Chen Y, Shen X-R, Wang XI, Zheng X-S, Zhao K, Chen Q-J, Deng F, Liu L-L, Yan B, Zhan F-X, Wang Y-Y, Xiao G-F, Shi Z-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3. https://doi.org/10.1038/s41586-020-2012-7.

    Article  Google Scholar 

  15. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058.

    Article  Google Scholar 

  16. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020;76:14–20. https://doi.org/10.1016/j.ejim.2020.04.037.

    Article  Google Scholar 

  17. Ruimboom L. SARS-CoV 2; possible alternative virus receptors and pathophysiological determinants. Med Hypotheses. 2021;146:110368. https://doi.org/10.1016/j.mehy.2020.110368.

    Article  Google Scholar 

  18. Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147, CD26 and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy. 2020; https://doi.org/10.1111/all.14429.

  19. Sungnak W, Huang NI, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681–7.

    Article  Google Scholar 

  20. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016–1035.e19. https://doi.org/10.1016/j.cell.2020.04.035.

    Article  Google Scholar 

  21. Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020;526(1):135–40.

    Article  Google Scholar 

  22. Hibino T, Sakaguchi M, Miyamoto S, et al. S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis. Cancer Res. 2013;73(1):172–83.

    Article  Google Scholar 

  23. Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, Talavera-López C, Maatz H, Reichart D, Sampaziotis F, Worlock KB, Yoshida M, Barnes JL, Banovich NE, Barbry P, Brazma A, Collin J, Desai TJ, Duong TE, Eickelberg O, Falk C, Farzan M, Glass I, Gupta RK, Haniffa M, Horvath P, Hubner N, Hung D, Kaminski N, Krasnow M, Kropski JA, Kuhnemund M, Lako M, Lee H, Leroy S, Linnarson S, Lundeberg J, Meyer KB, Miao Z, Misharin AV, Nawijn MC, Nikolic MZ, Noseda M, Ordovas-Montanes J, Oudit GY, Pe'er D, Powell J, Quake S, Rajagopal J, Tata PR, Rawlins EL, Regev A, Reyfman PA, Rozenblatt-Rosen O, Saeb-Parsy K, Samakovlis C, Schiller HB, Schultze JL, Seibold MA, Seidman CE, Seidman JG, Shalek AK, Shepherd D, Spence J, Spira A, Sun X, Teichmann SA, Theis FJ, Tsankov AM, Vallier L, van den Berge M, Whitsett J, Xavier R, Xu Y, Zaragosi L-E, Zerti D, Zhang H, Zhang K, Mauricio Rojas Figueiredo F. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681–7.

    Article  Google Scholar 

  24. Sokolowska M, Lukasik ZM, Agache I, et al. Immunology of COVID-19: mechanisms, clinical outcome, diagnostics, and perspectives-a report of the European academy of allergy and clinical immunology (EAACI). Allergy. 2020;75(10):2445–76. https://doi.org/10.1111/all.14462.

    Article  Google Scholar 

  25. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529–39. https://doi.org/10.1007/s00281-017-0629-x.

    Article  Google Scholar 

  26. Lei F, et al. Longitudinal association between markers of liver injury and mortality in COVID-19 in China. Hepatology. 2020;72:389–98. https://doi.org/10.1002/hep.31301.

    Article  Google Scholar 

  27. Zhang C, Wu Z, Li J-W, Zhao H, Wang G-Q. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020;55(5):105954.

    Article  Google Scholar 

  28. Lillicrap D. Disseminated intravascular coagulation in patients with 2019-nCoV pneumonia. J Thromb Haemost. 2020;18:786–7. https://doi.org/10.1111/jth.14781.

    Article  Google Scholar 

  29. Quirch M, Lee J, Rehman S. Hazards of the cytokine storm and cytokine-targeted therapy in patients with COVID-19. J Med Int Res. 2020;22:e20193.

    Google Scholar 

  30. Hojyo S, Uchida M, Tanaka K, Hasebe R, Tanaka Y, Murakami M, Hirano T. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen. 2020;40:37. https://doi.org/10.1186/s41232-020-00146-3.

    Article  Google Scholar 

  31. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–74.

    Article  Google Scholar 

  32. Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). MedRxiv. 2020. https://doi.org/10.1101/2020.02.18.20024364. (Epub ahead of print).

  33. Okabayashi T, Kariwa H, Yokota SI, et al. Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. J Med Virol. 2006;78(4):417–24.

    Article  Google Scholar 

  34. Wan S, Yi Q, Fan S, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). MedRxiv. 2020. https://doi.org/10.1101/2020.02.10.20021832. (Epub ahead of print).

  35. Liu F, Li L, Xu M, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020;127:104370.

    Article  Google Scholar 

  36. Han H, Ma Q, Li C, et al. Profiling serum cytokines in COVİD-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123–30.

    Article  Google Scholar 

  37. Wang D, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–9. https://doi.org/10.1001/jama.2020.1585.

    Article  Google Scholar 

  38. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–90. https://doi.org/10.1007/s00134-020-05985-9.

  39. Mukherjee A, Ahmad M, Frenia D. A coronavirus disease 2019 (COVID-19) patient with multifocal pneumonia treated with hydroxychloroquine. Cureus. 2020;12:–e7473. https://doi.org/10.7759/cureus.7473.

  40. Yi Y, Lagniton PNP, Ye S, Li E, Xu R-H. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci. 2020;16:1753–66. https://doi.org/10.7150/ijbs.45134.

    Article  Google Scholar 

  41. Robles A, et al. Viral vs bacterial community-acquired pneumonia: Radiologic features. Eur Respir Soc. 2011;38:2507.

    Google Scholar 

  42. Chung M, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020;295:202–7.

    Article  Google Scholar 

  43. Shi H, Han X, Zheng C. Evolution of CT manifestations in a patient recovered from 2019 novel coronavirus (2019-nCoV) pneumonia in Wuhan, China. Radiology. 2020;295:20. https://doi.org/10.1148/radiol.2020200269.

    Article  Google Scholar 

  44. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–7. https://doi.org/10.1002/path.1570.

    Article  Google Scholar 

  45. Pyrc K, Berkhout B, van der Hoek L. The novel human coronaviruses NL63 and HKU1. J Virol. 2007;81:3051–7. https://doi.org/10.1128/jvi.01466-06.

    Article  Google Scholar 

  46. Bernstein KE, Khan Z, Giani JF, Cao DY, Bernstein EA, Shen XZ. Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol. 2018;14:325–36. https://doi.org/10.1038/nrneph.2018.15.

    Article  Google Scholar 

  47. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383:120–8. https://doi.org/10.1056/NEJMoa2015432.

    Article  Google Scholar 

  48. Deshmukh V, Motwani R, Kumar A, Kumari C, Raza K. Histopathological observations in COVID-19: A systematic review. J Clin Pathol. 2020; https://doi.org/10.1136/jclinpath-2020-206995.

  49. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–8. https://doi.org/10.1016/S0140-6736(20)30937-5.

    Article  Google Scholar 

  50. Calabrese F, Pezzuto F, Fortarezza F, Hofman P, Kern I, Panizo A, von der Thüsen J, Timofeev S, Gorkiewicz G, Lunardi F. Pulmonary pathology and COVID-19: Lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Arch. 2020;477:359–72. https://doi.org/10.1007/s00428-020-02886-6.

    Article  Google Scholar 

  51. Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID-19 Autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;153:725–33. https://doi.org/10.1093/ajcp/aqaa062.

    Article  Google Scholar 

  52. Fox SE, Akmatbekov A, Harbert JL, Li G, Quincy BJ, Vander Heide RS. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8:681–6. https://doi.org/10.1016/S2213-2600(20)30243-5.

    Article  Google Scholar 

  53. Buja LM, Wolf DA, Zhao B, Akkanti B, McDonald M, Lelenwa L, Reilly N, Ottaviani G, Elghetany MT, Trujillo DO, et al. The emerging spectrum of cardiopulmonary pathology of the coronavirus disease 2019 (COVID-19): Report of 3 autopsies from Houston, Texas, and review of autopsy findings from other United States cities. Cardiovasc Pathol. 2020;48:107233. https://doi.org/10.1016/j.carpath.2020.107233.

    Article  Google Scholar 

  54. Menter T, Haslbauer JD, Nienhold R, Savic S, Hopfer H, Deigendesch N, Frank S, Turek D, Willi N, Pargger H, et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology. 2020;77:198–209. https://doi.org/10.1111/his.14134.

    Article  Google Scholar 

  55. Hanley B, Naresh KN, Roufosse C, Nicholson AG, Weir J, Cooke GS, Thursz M, Manousou P, Corbett R, Goldin G, et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe. 2020;1:e245–e53. https://doi.org/10.1016/S2666-5247(20)30115-4.

    Article  Google Scholar 

  56. Burchfield J. Renin-Angiotensin-Aldosterone system: double-edged sword in COVID-19 infection; 2020.

    Google Scholar 

  57. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med. 2020;35:1545. https://doi.org/10.1007/s11606-020-05762-w.

    Article  Google Scholar 

  58. Turner AJ, Hiscox JA, Hooper NM. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci. 2004;25:291–4. https://doi.org/10.1016/j.tips.2004.04.001.

    Article  Google Scholar 

  59. Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259–60. https://doi.org/10.1038/s41569-020-0360-5. PMID: 32139904; PMCID: PMC7095524.

  60. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185–92. https://doi.org/10.1007/s11684-020-0754-0. Epub 2020 Mar 12. PMID: 32170560; PMCID: PMC7088738.

  61. Gheblawi M, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 2020;126:1456–74. https://doi.org/10.1161/CIRCRESAHA.120.317015.

    Article  Google Scholar 

  62. Bradley BT, et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020; https://doi.org/10.1016/S0140-6736(20)31305-2.

  63. Wu C et al. Heart injury signs are associated with higher and earlier mortality in coronavirus disease 2019 (COVID-19). medRxiv. 2020.

    Google Scholar 

  64. Gu J, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202:415–24. https://doi.org/10.1084/jem.20050828.

    Article  Google Scholar 

  65. Zhang T, et al. CaMKII is a RIP3 substrate mediating ischemia-and oxidative stress-induced myocardial necroptosis. Nat Med. 2016;22:175. https://doi.org/10.1038/nm.4017.

    Article  Google Scholar 

  66. Mohanty SK, Satapathy A, Naidu MM, Mukhopadhyay S, Sharma S, Barton LM, Stroberg E, Duval EJ, Pradhan D, Tzankov A, et al. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19)—anatomic pathology perspective on current knowledge. Diagn Pathol. 2020;15:103. https://doi.org/10.1186/s13000-020-01017-8.

    Article  Google Scholar 

  67. Liu PP, Blet A, Smyth D, Li H. The science underlying COVID- 19: Implications for the cardiovascular system. Circulation. 2020; https://doi.org/10.1161/circulationaha.120.047549.

  68. Zhou B, Zhao W, Feng R, Zhang X, Li X, Zhou Y, Peng L, Li Y, Zhang J, Luo J, et al. The pathological autopsy of coronavirus disease 2019 (COVID-2019) in China: a review. Pathog Dis. 2020;78 https://doi.org/10.1093/femspd/ftaa026.

  69. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20:269–70. https://doi.org/10.1038/s41577-020-0308-3.

    Article  Google Scholar 

  70. Unsinger J, McDonough JS, Shultz LD, Ferguson TA, Hotchkiss RS. Sepsis-induced human lymphocyte apoptosis and cytokine production in “humanized” mice. J Leukoc Biol. 2009;86:219–27. https://doi.org/10.1189/jlb.1008615.

    Article  Google Scholar 

  71. Li H, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020; https://doi.org/10.1016/s0140-6736(20)30920-x.

  72. Hayashi Y, Wagatsuma K, Nojima M, et al. The characteristics of gastrointestinal symptoms in patients with severe COVID-19: a systematic review and meta-analysis. J Gastroenterol. 2021:1–12. https://doi.org/10.1007/s00535-021-01778-z.

  73. Tabary M, Khanmohammadi S, Araghi F, Dadkhahfar S, Tavangar SM. Pathologic features of COVID-19: a concise review. Pathol Res Pract. 2020;216:153097. https://doi.org/10.1016/j.prp.2020.153097.

    Article  Google Scholar 

  74. Suchonwanit P, Leerunyakul K, Kositkuljorn C. Cutaneous manifestations in COVID-19: lessons learned from current evidence. J Am Acad Dermatol. 2020;83:e57–60. https://doi.org/10.1016/j.jaad.2020.04.094.

    Article  Google Scholar 

  75. El Hachem M, Diociaiuti A, Concato C, Carsetti R, Carnevale C, Ciofi Degli Atti M, Giovannelli L, Latella E, Porzio O, Rossi S, et al. A clinical, histopathological and laboratory study of 19 consecutive Italian paediatric patients with chilblain-like lesions: Lights and shadows on the relationship with COVID-19 infection. J Eur Acad Dermatol Venereol. 2020;34:2620–9. https://doi.org/10.1111/jdv.16682.

    Article  Google Scholar 

  76. Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging (Albany NY). 2020;12(7):6049–57.

    Article  Google Scholar 

  77. Dong X, Cao Y-Y, Lu X-X, et al. Eleven faces of coronavirus disease 2019. Allergy. 2020;75(7):1699–709. https://doi.org/10.1111/all.14289.

    Article  Google Scholar 

  78. Wang J, Luo Q, Chen R, Chen T, Li J. Susceptibility analysis of COVID-19 in smokers based on ACE2. Preprintsorg. 2020; preprint.

    Google Scholar 

  79. Leung JM, Yang CX, Tam A, et al. ACE-2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19. European Respiratory Journal. 2020;55(5):2000688.

    Article  Google Scholar 

  80. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193–9.

    Article  Google Scholar 

  81. Michalovich D, Rodriguez-Perez N, Smolinska S, et al. Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. Nat Commun. 2019;10(1):5711.

    Article  Google Scholar 

  82. Wambier CG, Goren A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated. J Am Acad Dermatol. 2020;83(1):308–9.

    Article  Google Scholar 

  83. Wang LS, Williamson SR, Zhang SB, et al. Increased androgen receptor gene copy number is associated with TMPRSS2-ERG rearrangement in prostatic small cell carcinoma. Mol Carcinogen. 2015;54(9):900–7.

    Article  Google Scholar 

  84. Jones TC, Mühlemann B, Veith T, et al. An analysis of SARS-CoV-2 viral load by patient age. Submitted. 2020. https://doi.org/10.1101/2020.06.08.20125484.

  85. Maddux AB, Douglas IS. Is the developmentally immature immune response in paediatric sepsis a recapitulation of immune tolerance? Immunology. 2015;145(1):1–10.

    Article  Google Scholar 

  86. The ARDS. Definition Task force*. acute respiratory distress syndrome: the berlin definition. JAMA. 2012;307(23):2526–33. https://doi.org/10.1001/jama.2012.5669.

    Article  Google Scholar 

  87. Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA. 2020;323(22):2329–30. https://doi.org/10.1001/jama.2020.6825.

    Article  Google Scholar 

  88. Han H, Yang L, Liu R, Liu F, Wu KL, Li J, Liu XH, Zhu CL. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020;58(7):1116–20. https://doi.org/10.1515/cclm-2020-0188.

    Article  Google Scholar 

  89. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, Kaptein FHJ, van Paassen J, Stals MAM, Huisman MV, Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–7. https://doi.org/10.1016/j.thromres.2020.04.013.

    Article  Google Scholar 

  90. Nicolai L, Leunig A, Brambs S, Kaiser R, Weinberger T, Weigand M, Muenchhoff M, Hellmuth JC, Ledderose S, Schulz H, Scherer C, Rudelius M, Zoller M, Höchter D, Keppler O, Teupser D, Zwißler B, von Bergwelt-Baildon M, Kääb S, Massberg S, Pekayvaz K, Stark K. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation. 2020;142(12):1176–89. https://doi.org/10.1161/CIRCULATIONAHA.120.048488. Epub 2020 Jul 28. PMID: 32755393; PMCID: PMC7497892

    Article  Google Scholar 

  91. Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost. 2020;18(9):2103–9. https://doi.org/10.1111/jth.14975. Epub 2020 Jul 21. PMID: 32558075; PMCID: PMC7323352

    Article  Google Scholar 

  92. Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, Winter H, Meister M, Veith C, Boots AW, Hennig BP, Kreuter M, Conrad C, Eils R. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;39(10):e105114. https://doi.org/10.15252/embj.20105114. Epub 2020 Apr 14. PMID: 32246845; PMCID: PMC7232010

    Article  Google Scholar 

  93. Wichmann D, Sperhake JP, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020;173(4):268–77. https://doi.org/10.7326/M20-2003.

    Article  Google Scholar 

  94. Lodigiani C, Iapichino G, Carenzo L, Cecconi M, Ferrazzi P, Sebastian T, Kucher N, Studt JD, Sacco C, Bertuzzi A, Sandri MT, Barco S, Humanitas COVID-19 Task Force. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14. https://doi.org/10.1016/j.thromres.2020.04.024. Epub 2020 Apr 23. PMID: 32353746; PMCID: PMC7177070

    Article  Google Scholar 

  95. Connell NT, Battinelli EM, Connors JM. Coagulopathy of COVID-19 and antiphospholipid antibodies. J Thromb Haemost. 2020; https://doi.org/10.1111/jth.14893.

  96. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (Covid-19): a review. JAMA. 2020;324(8):782–93. https://doi.org/10.1001/jama.2020.12839.

    Article  Google Scholar 

Download references

Conflicts of Interest

No relevant conflicts of interest.

Funding

 No funding was obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taizoon Dhoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crain, N.A., Ramezani, A.D., Dhoon, T. (2022). COVID-19 Pathophysiology and COVID-19-Induced Respiratory Failure. In: Hakimi, A.A., Milner, T.E., Rajan, G.R., Wong, B.JF. (eds) Mechanical Ventilation Amid the COVID-19 Pandemic. Springer, Cham. https://doi.org/10.1007/978-3-030-87978-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87978-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87977-8

  • Online ISBN: 978-3-030-87978-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics