Skip to main content

Osteoporosis Risk Assessment Tools

  • Chapter
  • First Online:
New Horizons in Osteoporosis Management

Abstract

Osteoporosis is the most common bone disease in humans. Osteoporosis is a disease characterized by low bone mass and microarchitectural deterioration of bone tissue, leading to enhanced bone fragility and a consequent increase in fracture risk. In most cases, osteoporosis is asymptomatic until fracture occurs, yet it can be diagnosed using dual-energy X-ray absorptiometry (DXA). Unfortunately, only a minority of men and women receives treatment even after sustaining a fragility fracture. The reason for this large treatment gap (the difference between the number of individuals at high risk and the proportion of the population who receives treatment) is complex and multifactorial. One of the reasons is, however, limitations in the assessment of fracture risk. Therefore, most countries have adopted a case-finding strategy whereby persons with one or more risk factors for osteoporosis may be referred for a DXA scan. This strategy, however, does not perform well, evidenced by the findings that osteoporosis remains underdiagnosed and undertreated. Therefore, population screening could be one of the remedy approaches for this problem. However, at present, there is no universally accepted policy for population screening to identify patients with osteoporosis or those at high risk of fracture. This chapter will review the evidence of osteoporosis screening, benefits, and harms of early detection of osteoporosis, as well as the most common osteoporosis risk assessment tools, including self-assessment tools. The chapter will expand to discuss thresholds for intervention and rooms for improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J, Burckhardt P, Cooper C, Christiansen C, Cummings S, Eisman JA, Fujiwara S, Glüer C, Goltzman D, Hans D, Krieg MA, La Croix A, McCloskey E, Mellstrom D, Melton LJ 3rd, Pols H, Reeve J, Sanders K, Schott AM, Silman A, Torgerson D, van Staa T, Watts NB, Yoshimura N. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int. 2007;18:1033–46.

    CAS  PubMed  Google Scholar 

  2. Hippisley-Cox J, Coupland C. Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ. 2009;339:b4229.

    PubMed  PubMed Central  Google Scholar 

  3. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV. Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int. 2007;18:1109–17.

    CAS  PubMed  Google Scholar 

  4. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV. Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int. 2008;19:1431–44.

    CAS  PubMed  Google Scholar 

  5. Sambrook PN, Flahive J, Hooven FH, Boonen S, Chapurlat R, Lindsay R, Nguyen TV, Diez-Perez A, Pfeilschifter J, Greenspan SL, Hosmer D, Netelenbos JC, Adachi JD, Watts NB, Cooper C, Roux C, Rossini M, Siris ES, Silverman S, Saag KG, Compston JE, LaCroix A, Gehlbach S. Predicting fractures in an international cohort using risk factor algorithms without BMD. J Bone Miner Res. 2011;26:2770–7.

    PubMed  Google Scholar 

  6. Tanaka S, Kuroda T, Saito M, Shiraki M. Urinary pentosidine improves risk classification using fracture risk assessment tools for postmenopausal women. J Bone Miner Res. 2011;26:2778–84.

    CAS  PubMed  Google Scholar 

  7. Cummins NM, Poku EK, Towler MR, O’Driscoll OM, Ralston SH. Clinical risk factors for osteoporosis in Ireland and the UK: a comparison of FRAX and QFractureScores. Calcif Tissue Int. 2011;89:172–7.

    CAS  PubMed  Google Scholar 

  8. Bolland MJ, Siu AT, Mason BH, Horne AM, Ames RW, Grey AB, Gamble GD, Reid IR. Evaluation of the FRAX and Garvan fracture risk calculators in older women. J Bone Miner Res. 2011;26:420–7.

    PubMed  Google Scholar 

  9. Sandhu SK, Nguyen ND, Center JR, Pocock NA, Eisman JA, Nguyen TV. Prognosis of fracture: evaluation of predictive accuracy of the FRAX algorithm and Garvan nomogram. Osteoporos Int. 2010;21:863–71.

    CAS  PubMed  Google Scholar 

  10. Rubin KH, Friis-Holmberg T, Hermann AP, Abrahamsen B, Brixen K. Risk assessment tools to identify women with increased risk of osteoporotic fracture: complexity or simplicity? A systematic review. J Bone Miner Res. 2013;28:1701–17.

    PubMed  Google Scholar 

  11. Weinstein L, Ullery B. Identification of at-risk women for osteoporosis screening. Am J Obstetr Gynecol. 2000;183:547–9.

    CAS  Google Scholar 

  12. Cadarette SM, Jaglal SB, Kreiger N, McIsaac WJ, Darlington GA, Tu JV. Development and validation of the osteoporosis risk assessment instrument to facilitate selection of women for bone densitometry. CMAJ. 2000;162:1289–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Koh LK, Sedrine WB, Torralba TP, Kung A, Fujiwara S, Chan SP, et al. A simple tool to identify Asian women at increased risk of osteoporosis. Osteoporos Int. 2001;12:699–705.

    CAS  PubMed  Google Scholar 

  14. Richy F, Gourlay M, Ross PD, Sen SS, Radican L, De CF, et al. Validation and comparative evaluation of the osteoporosis self-assessment tool (OST) in a Caucasian population from Belgium. QJM. 2004;97:39–46.

    CAS  PubMed  Google Scholar 

  15. Cadarette SM, Jaglal SB, Murray TM. Validation of the simple calculated osteoporosis risk estimation (SCORE) for patient selection for bone densitometry. Osteoporos Int. 1999;10:85–90.

    CAS  PubMed  Google Scholar 

  16. Cummings SR, Nevitt MC, Browner WS, et al. Study of Osteoporotic Fractures Research Group, Risk factors for hip fracture in white women. N Engl J Med. 1995;332(12):767–73.

    CAS  PubMed  Google Scholar 

  17. SedrineWB CT, Zegels B, Kvasz A, Micheletti MC, Gelas B, et al. Development and assessment of the Osteoporosis Index of Risk (OSIRIS) to facilitate selection of women for bone densitometry. Gynecol Endocrinol. 2002;16:245–50.

    Google Scholar 

  18. Sim MFV, et al. Cost effectiveness analysis of BMD referral for DXA using ultrasound as a selective pre-screen in a group of women with low trauma Colles’ fractures. Technol Health Care. 2000;8(5):277–84.

    CAS  PubMed  Google Scholar 

  19. Cadarette SM, et al. Development and validation of the Osteoporosis Risk Assessment Instrument to facilitate selection of women for bone densitometry. Can Med Assoc J. 2000;162(9):1289–94.

    CAS  Google Scholar 

  20. Richy F, et al. Validation and comparative evaluation of the osteoporosis self-assessment tool (OST) in a Caucasian population from Belgium. QJM. 2004;97(1):39–46.

    CAS  PubMed  Google Scholar 

  21. Cadarette SM, et al. Evaluation of decision rules for referring women for bone densitometry by dual-energy x-ray absorptiometry. J Am Med Assoc. 2001;286(1):57–63.

    CAS  Google Scholar 

  22. van der Voort DJ, et al. Screening for osteoporosis using easily obtainable biometrical data: diagnostic accuracy of measured, self-reported and recalled BMI, and related costs of bone mineral density measurements. Osteoporos Int. 2000;11(3):233–9.

    PubMed  Google Scholar 

  23. Steel SA, et al. Factors affecting long-term adherence to hormone replacement therapy after screening for osteoporosis. Climacteric. 2003;6(2):96–103.

    CAS  PubMed  Google Scholar 

  24. Kanis JA, et al. Ten-year risk of osteoporotic fracture and the effect of risk factors on screening strategies. Bone. 2002;30(1):251–8.

    CAS  PubMed  Google Scholar 

  25. Genant HK, et al. Interim report and recommendations of the World Health Organization Task Force for Osteoporosis. Osteoporos Int. 1999;10(4):259–64.

    CAS  PubMed  Google Scholar 

  26. Samprieto-Colom L, Almazan C, Granados A. Bone densitometry assessment. Barcelona: Catalan Agency for Health Technology Assessment and Research (CAHTA); 1993. p. 47.

    Google Scholar 

  27. Green CJ, Bassett K, Foerster V, Kazanjian A. Bone mineral density testing: does the evidence support its selective use in well women? vol. 02T. The University of British Columbia, British Columbia Office of Health Technology Assessment; 1997. p. 188.

    Google Scholar 

  28. The Canadian Coordinating Office for Health Technology Assessment (CCOHTA). Bone mineral density screening – pre-assessment. Ottawa: Canadian Coordinating Office for Health Technology Assessment (CCOHTA); 2003. p. 18.

    Google Scholar 

  29. Sheldon TA. Screening for osteoporosis to prevent fractures. In: Effective health care, vol. 1. London: University of York, Centre for Reviews and Dissemination (CRD); 1992. p. 12.

    Google Scholar 

  30. Hailey D, et al. International collaboration in health technology assessment: a study of technologies used in management of osteoporosis. Health Policy. 1998;43(3):233–41.

    CAS  PubMed  Google Scholar 

  31. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. J Am Med Assoc. 2001;285:785–95.

    Google Scholar 

  32. Nelson HD, et al. Screening for postmenopausal osteoporosis: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2002;137(6):529–43.

    PubMed  Google Scholar 

  33. Curry S, Krist A, Owens D, Barry M, Caughey A, Davidson K, Doubeni C, Epling J Jr, Kemper A, Kubik M, Landefeld S, Mangione C, Phipps M, Pignone M, Silverstein M, Simon M, Tseng C, Wong J. US Preventive Services Task Force. Recommendation Statement. Screening for osteoporosis to prevent fractures US Preventive Services Task Force Recommendation Statement. JAMA. 2018;319(24):2521–31. https://doi.org/10.1001/jama.2018.7498.

    Article  PubMed  Google Scholar 

  34. Viswanathan M, Reddy S, Berkman N, et al. Screening to prevent osteoporotic fractures: an evidence review for the US Preventive Services Task Force: evidence synthesis no. 162. Rockville: Agency for Healthcare Research and Quality; 2018. AHRQ publication 15-05226-EF-1.

    Google Scholar 

  35. Shepstone L, Lenaghan E, Cooper C, et al. SCOOP Study Team. Screening in the community to reduce fractures in older women (SCOOP): a randomised controlled trial. Lancet. 2018;391(10122):741–7. https://doi.org/10.1016/S0140-6736(17)32640-5.

    Article  PubMed  Google Scholar 

  36. Viswanathan M, Reddy S, Berkman N, et al. Screening to prevent osteoporotic fractures: updated evidence report and systematic review for the US Preventive Services Task Force [published June 26, 2018]. JAMA. https://doi.org/10.1001/jama.2018.6537.

  37. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359:1929–36.

    PubMed  Google Scholar 

  38. Hui SL, Slemenda CW, Johnston CC Jr. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest. 1988;81:1804–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, Jonsson B. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int. 2001;12:989–95.

    CAS  PubMed  Google Scholar 

  40. Kanis JA, on behalf of the World Health Organization Scientific Group (2007) Assessment of osteoporosis at the primary health-care level. Technical Report. World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield. Accessed https://www.shef.ac.uk/FRAX/reference.aspx 14 July 2015.

  41. Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J, et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int. 2007;18:1033–46.

    CAS  PubMed  Google Scholar 

  42. Kanis JA, McCloskey E, Johansson H, Oden A, Leslie WD. FRAX with and without BMD. Calcif Tissue Int. 2012;90:1–13.

    CAS  PubMed  Google Scholar 

  43. Kanis JA, Johnell O. Requirements for DXA for the management of osteoporosis in Europe. Osteoporos Int. 2005;16:229–38.

    CAS  PubMed  Google Scholar 

  44. Kanis JA, Odén A, McCloskey EV, Johansson H, Wahl D, Cyrus Cooper C, on behalf of the IOF Working Group on Epidemiology and Quality of Life. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012;23:2239–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanis JA, Harvey NC, Cooper C, Johansson H, Odén A, McCloskey EV, The Advisory Board of the National. Osteoporosis Guideline Group. A systematic review of intervention thresholds based on FRAX. Arch Osteoporos. 2016;11:25–73.

    PubMed  PubMed Central  Google Scholar 

  46. Kanis JA, Hans D, Cooper C, et al. Interpretation and use of FRAX in clinical practice. Osteoporos Int. 2011;22:2395–411.

    CAS  PubMed  Google Scholar 

  47. Middleton RG, Shabani F, Uzoigwe CE, Shoaib A, Moqsith M, Venkatesan M. FRAX and the assessment of the risk of developing a fragility fracture. J Bone Joint Surg. 2012;94B:1313–20.

    Google Scholar 

  48. Kanis JA, Johansson H, Oden A, McCloskey EV. Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int. 2011;22:809–16.

    CAS  PubMed  Google Scholar 

  49. Leslie WD, Lix LM, Johansson H, Oden A, McLoskey EV, Kanis JA, for the Manitoba Bone Density Program. Spine-hip discordance and fracture risk assessment: a physician-friendly FRAX enhancement. Osteoporos Int. 2011;22:839–47.

    CAS  PubMed  Google Scholar 

  50. Johansson H, Kanis JA, Odén A, et al. Impact of femoral neck and lumbar spine BMD discordances on FRAX probabilities in women: a meta-analysis of international cohorts. Calcif Tissue Int. 2014;95:428–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Leslie WD, Johansson H, Kanis JA, Lamy O, Oden A, McCloskey EV, Hans D. Lumbar spine texture enhances ten-year fracture probability assessment. Osteoporos Int. 2014;25:2271–7.

    CAS  PubMed  Google Scholar 

  52. McCloskey EV, Odén A, Harvey NC, et al. Adjusting fracture probability by trabecular bone score. Calcif Tissue Int. 2015;96:500–9.

    CAS  PubMed  Google Scholar 

  53. McCloskey EV, Odén A, Harvey NC, et al. A meta-analysis of trabecular bone score in fracture risk prediction and its dependence on FRAX. J Bone Miner Res. 2016;31:940–8.

    PubMed  Google Scholar 

  54. Leslie WD, Lix LM, Morin SN, et al. Adjusting hip fracture probability in men and women using hip axis length: the Manitoba bone density database. J Clin Densitom. 2015; https://doi.org/10.1016/j.jocd.2015.07.004.

  55. Masud T, Binkley N, Boonen S, Hannan MT, FRAX® Position Development Conference Members. Official Positions for FRAX® clinical regarding falls and frailty: can falls and frailty be used in FRAX®? From Joint Official Positions Development Conference of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX®. J Clin Densitom. 2011;14:194–204.

    PubMed  Google Scholar 

  56. Hippisley-Cox J, Coupland C. Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractures Scores. Br Med J. 2009;339:b4229.

    Google Scholar 

  57. Kanis JA, Harvey NC, Johansson H, Odén A, McCloskey EV, Leslie WD. Overview of fracture prediction tools. J Clin Densitom. 2017;20(3):444–50.

    PubMed  PubMed Central  Google Scholar 

  58. Crandall CJ. Risk assessment tools for osteoporosis screening in postmenopausal women: a systematic review. Curr Osteoporos Rep. 2015;13:287–301.

    PubMed  Google Scholar 

  59. Billington EO, Gamble GD, Reid IR. Reasons for discrepancies in hip fracture risk estimates using FRAX and Garvan calculators. Maturitas. 2016;85:11–8.

    PubMed  Google Scholar 

  60. Reyes Domínguez AI, Sosa Cabrera N, Saavedra Santana P, Gómez de Tejada Romero MJ, Jódar Gimeno E, Sosa Henríquez M. Assessment of the predictive capacity of the Garvan calculator of 10 year risk of fracture in a Spanish population. Rev Osteoporos Metab Miner. 2017;9(2):55–61.

    Google Scholar 

  61. Leslie WD, Morin SN, Lix LM, Martineau P, Bryanton M, McCloskey EV, Johansson H, Harvey NC, Kanis JA. Fracture prediction from self-reported falls in routine clinical practice: a registry-based cohort study. Osteoporos Int. 2019; https://doi.org/10.1007/s00198-019-05106-3.

  62. Kanis JA, on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health-care level. Technical report. Sheffield: World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield; 2007. Accessed https://www.shef.ac.uk/FRAX/reference.aspx 14 July 2015.

    Google Scholar 

  63. McClung MR, Geusens P, Miller PD, et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med. 2001;344:333–40. [PubMed: 11172164].

    CAS  PubMed  Google Scholar 

  64. Kayan K, Johansson H, Oden A, et al. Can fall risk be incorporated into fracture risk assessment algorithms: a pilot study of responsiveness to clodronate. Osteoporos Int. 2009;20:2055–61. [PubMed: 19436939].

    CAS  PubMed  Google Scholar 

  65. Gillespie LD, Robertson MC, Gillespie WJ, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2009:CD007146.

    Google Scholar 

  66. Johansson J, Harvey N, Odén A, et al. The predictive value of falls history for incident fracture decreases with time: MrOs Sweden. J Bone Miner Res. 2015;30:S424.

    Google Scholar 

  67. Kanis JA, Oden A, Johnell O, Jonsson B, de Laet C, Dawson A. The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int. 2001;12:417–27. [PubMed: 11444092].

    CAS  PubMed  Google Scholar 

  68. Kanis JA, Oden A, Johansson H, McCloskey E. Pitfalls in the external validation of FRAX. Osteoporos Int. 2012;23:423–31.

    CAS  PubMed  Google Scholar 

  69. Langsetmo L, Nguyen TV, Nguyen ND, et al. Independent external validation of nomograms for predicting risk of low trauma fracture and hip fracture. CMAJ. 2011;183:E107.

    PubMed  PubMed Central  Google Scholar 

  70. John A. Kanis, Nicholas C Harvey, Helena Johansson, Anders Odén1, Eugene V. McCloskey, and William D. Leslie. Overview of fracture prediction tools. J Clin Densitom. 2017;20(3):444–50.

    Google Scholar 

  71. Ahmed LA, Nguyen ND, Bjørnerem A, et al. External validation of the Garvan nomograms for predicting absolute fracture risk: the Tromsø study. PLoS One. 2014;9(9):e107695.

    PubMed  PubMed Central  Google Scholar 

  72. Hippisley-Cox J, Coupland C. Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study. Br Med J. 2012;344:e3427.

    Google Scholar 

  73. Kanis JA, Johnell O, De Laet C, et al. A meta-analysis of previous fracture and subsequent fracture risk. Bone. 2004;35:375–82.

    CAS  PubMed  Google Scholar 

  74. Leslie WB, Lix LM. Comparison between various risk assessment tools. Osteoporos Int. 2014;25:1–21. [PubMed: 23797847].

    CAS  PubMed  Google Scholar 

  75. Thomsen K, Ryg J, Matzen L, Hermann AP, Masud T. Choice of osteoporosis guideline has important implications for the treatment decision in elderly women referred to a fall clinic. Dan Med J. 2014;61:A4980. [PubMed: 25441734].

    PubMed  Google Scholar 

  76. Davis S, Martyn-St James M, Sanderson J, et al. Bisphosphonates for preventing osteoporotic fragility fractures (including a partial update of NICE technology appraisal guidance 160 and 161). Technology Assessment Report: Final report to the National Institute for Health and Care Excellence. 2015.

    Google Scholar 

  77. Hippisley-Cox J, Coupland C. Validation of QFracture compared with FRAX. Analysis prepared for NICE, 2011. 2011. http://www.qfracture.org/Validation-of-QFracture-vs-FRAX-for-NICE-2011.pdf. Accessed 15 May 2015.

  78. Kanis JA, Compston J, Cooper C, et al. SIGN guidelines for Scotland. BMD vs. FRAX vs. QFracture. Calcif Tissue Int. 2016;98:417–25. [PubMed: 26650822].

    CAS  PubMed  Google Scholar 

  79. DeLusignan S, Valentin T, Chan T, et al. Problems with primary care data quality: osteoporosis as an exemplar. Inform Prim Care. 2004;12:147–56.

    Google Scholar 

  80. Johansson H, Kanis JA, Oden A, Compston J, McCloskey E. A comparison of case-finding strategies in the UK for the management of hip fractures. Osteoporos Int. 2012;23:907–15. [PubMed: 22234810].

    CAS  PubMed  Google Scholar 

  81. Kanis JA, Johansson H, Oden A, et al. A family history of fracture and fracture risk: a meta-analysis. Bone. 2004;35:1029–37.

    CAS  PubMed  Google Scholar 

  82. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA, Berger M. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res. 2000;15(4):721–39. [PubMed: 10780864].

    CAS  PubMed  Google Scholar 

  83. Siggeirsdottir K, Aspelund T, Johansson H, et al. The incidence of a first major osteoporotic fracture in Iceland and implications for FRAX. Osteoporos Int. 2014;25:2445–51. [PubMed: 24980183].

    CAS  PubMed  Google Scholar 

  84. Lam A, Leslie WD, Lix LM, Yogendran M, Morin SN, Majumdar SR. Major osteoporotic to hip fracture ratios in Canadian men and women with Swedish comparisons: a population-based analysis. J Bone Miner Res. 2014;29:1067–73.

    PubMed  Google Scholar 

  85. Lydick E, Cook K, Turpin J, Melton M, Stine R, Byrnes C. Development and validation of a simple questionnaire to facilitate identification of women likely to have low bone density. Am J Manag Care. 1998;4:37–48.

    CAS  PubMed  Google Scholar 

  86. Reginster JY, Ben SW, Viethel P, Micheletti MC, Chevallier T, Audran M. Validation of OSIRIS, a prescreening tool for the identification of women with an increased risk of osteoporosis. Gynecol Endocrinol. 2004;18:3–8.

    CAS  PubMed  Google Scholar 

  87. Adler RA, Tran MT, Petkov VI. Performance of the osteoporosis self-assessment screening tool for osteoporosis in American men. Mayo Clin Proc. 2003;78:723–7.

    PubMed  Google Scholar 

  88. Geusens P, Hochberg MC, van der Voort DJ, Pols H, van der Klift KM, Siris E, et al. Performance of risk indices for identifying low bone density in postmenopausal women. Mayo Clin Proc. 2002;77:629–37.

    PubMed  Google Scholar 

  89. Kung AW, Ho AY, Ross PD, Reginster JY. Development of a clinical assessment tool in identifying asian men with low bone mineral density and comparison of its usefulness to quantitative bone ultrasound. Osteoporos Int. 2005;16:849–55. https://doi.org/10.1007/s00198-004-1778-z.

    Article  PubMed  Google Scholar 

  90. Chin KY. A review on the performance of osteoporosis self-assessment tool for asians in determining osteoporosis and fracture risk. Postgrad Med. 2017;129:734–46. https://doi.org/10.1080/00325481.2017.1353394.

    Article  PubMed  Google Scholar 

  91. Langsetmo L, Nguyen TV, Nguyen ND, Kovacs CS, Prior JC, Center JR, et al. Independent external validation of nomograms for predicting risk of low trauma fracture and hip fracture. CMAJ. 2011;183:E107–14.

    PubMed  PubMed Central  Google Scholar 

  92. Ahmed LA, Nguyen ND, Bjornerem A, Joakimsen RM, Jorgensen L, Stormer J, et al. External validation of the Garvan nomograms for predicting absolute fracture risk: the Tromso study. PLoS One. 2014;9:e107695. [PubMed: 25255221].

    PubMed  PubMed Central  Google Scholar 

  93. Pluskiewicz W, Adamczyk P, Franek E, Leszczynski P, Sewerynek E, Wichrowska H, et al. Ten-year probability of osteoporotic fracture in 2012 Polish women assessed by FRAX and nomogram by Nguyen, et al.-Conformity between methods and their clinical utility. Bone. 2010;46:1661–7.

    CAS  PubMed  Google Scholar 

  94. Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA, et al. Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration. J Bone Miner Res. 2010;25:2350–8.

    PubMed  Google Scholar 

  95. Leslie WD, Lix LM, Langsetmo L, Berger C, Goltzman D, Hanley DA, et al. Construction of a FRAX(R) model for the assessment of fracture probability in Canada and implications for treatment. Osteoporos Int. 2011;22:817–27.

    CAS  PubMed  Google Scholar 

  96. Ensrud KE, Lui LY, Taylor BC, Schousboe JT, Donaldson MG, Fink HA, et al. A comparison of prediction models for fractures in older women: is more better? Arch Intern Med. 2009;169:2087e94.

    Google Scholar 

  97. Tamaki J, Iki M, Kadowaki E, Sato Y, Kajita E, Kagamimori S, et al. Fracture risk prediction using FRAX(R): a 10-year follow-up survey of the Japanese Population-Based Osteoporosis (JPOS) Cohort Study. Osteoporos Int. 2011;22:3037–45.

    CAS  PubMed  Google Scholar 

  98. Azagra R, Roca G, Encabo G, Aguye A, Zwart M, Guell S, et al. FRAX(R) tool, the WHO algorithm to predict osteoporotic fractures: the first analysis of its discriminative and predictive ability in the Spanish FRIDEX cohort. BMC Musculoskelet Disord. 2012;13:204.

    PubMed  PubMed Central  Google Scholar 

  99. Ettinger B, Ensrud KE, Blackwell T, Curtis JR, Lapidus JA, Orwoll ES, et al. Performance of FRAX in a cohort of community-dwelling, ambulatory older men: the Osteoporotic Fractures in Men (MrOS) study. Osteoporos Int. 2013;24:1185–93.

    CAS  PubMed  Google Scholar 

  100. Bolland MJ, Siu AT, Mason BH, Horne AM, Ames RW, Grey AB, et al. Evaluation of the FRAX and Garvan fracture risk calculators in older women. J Bone Miner Res. 2011;26:420–7.

    PubMed  Google Scholar 

  101. Dagan N, Cohen-Stavi C, Leventer-Roberts M, Balicer RD. External validation and comparison of three prediction tools for risk of osteoporotic fractures using data from population based electronic health records: retrospective cohort study. BMJ. 2017;356:i6755.

    PubMed  PubMed Central  Google Scholar 

  102. Gourlay ML, Ritter VS, Fine JP, Overman RA, Schousboe JT, Cawthon PM, et al. Comparison of fracture risk assessment tools in older men without prior hip or spine fracture: the MrOS study. Arch Osteoporos. 2017;12:91.

    PubMed  PubMed Central  Google Scholar 

  103. Pluskiewicz W, Adamczyk P, Franek E, Sewerynek E, Leszczynski P, Wichrowska H, et al. FRAX calculator and Garvan nomogram in male osteoporotic population. Aging Male. 2014;17:174–82.

    PubMed  Google Scholar 

  104. Nguyen TV, Eisman JA. Fracture risk assessment: from population to individual. J Clin Densitom. 2017;20:368–78.

    PubMed  Google Scholar 

  105. Siontis GC, Tzoulaki I, Ioannidis JP. Predicting death: an empirical evaluation of predictive tools for mortality. Arch Intern Med. 2011;171:1721–6.

    PubMed  Google Scholar 

  106. Nguyen TV. Individualized assessment of fracture risk: contribution of "osteogenomic profile". J Clin Densitom. 2017;20:353–9.

    PubMed  Google Scholar 

  107. Marques A, Ferreira RJ, Santos E, Loza E, Carmona L, da Silva JA. The accuracy of osteoporotic fracture risk prediction tools: a systematic review and metaanalysis. Ann Rheum Dis. 2015;74:1958–67.

    PubMed  Google Scholar 

  108. van den Bergh JP, van Geel TA, Lems WF, Geusens PP. Assessment of individual fracture risk: FRAX and beyond. Curr Osteoporos Rep. 2010;8:131–7.

    PubMed  PubMed Central  Google Scholar 

  109. Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, et al. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res. 2012;27:301–8.

    PubMed  Google Scholar 

  110. van Geel TA, Nguyen ND, Geusens PP, Center JR, Nguyen TV, Dinant GJ, et al. Development of a simple prognostic nomogram for individualising 5-year and 10-year absolute risks of fracture: a population-based prospective study among postmenopausal women. Ann Rheum Dis. 2011;70:92–7.

    PubMed  Google Scholar 

  111. Bolland MJ, Grey A, Gamble G, Reid IR, Comment on Kanis, et al. Pitfalls in the external validation of FRAX. Osteoporos Int. 2013;24:389–90.

    CAS  PubMed  Google Scholar 

  112. Collins GS, Michaelsson K. Fracture risk assessment: state of the art, methodologically unsound, or poorly reported? Curr Osteoporos Rep. 2012;10:199–207.

    PubMed  Google Scholar 

  113. Lemeshow S, Klar J, Teres D. Outcome prediction for individual intensive care patients: useful, misused, or abused? Intensive Care Med. 1995;21:770–6.

    CAS  PubMed  Google Scholar 

  114. Galton F. Vox populi. Nature. 1907;75:450–1.

    Google Scholar 

  115. McCloskey EV, Johansson H, Oden A, Austin M, Siris E, Wang A, et al. Denosumab reduces the risk of osteoporotic fractures in postmenopausal women, particularly in those with moderate to high fracture risk as assessed with FRAX. J Bone Miner Res. 2012;27:1480–6.

    CAS  PubMed  Google Scholar 

  116. Kanis JA, Johansson H, Oden A, McCloskey EV. Bazedoxifene reduces vertebral and clinical fractures in postmenopausal women at high risk assessed with FRAX. Bone. 2009;44:1049e54.

    Google Scholar 

  117. Kanis JA, Johansson H, Oden A, McCloskey EV. A meta-analysis of the effect of strontium ranelate on the risk of vertebral and non-vertebral fracture in postmenopausal osteoporosis and the interaction with FRAX((R)). Osteoporos Int. 2011;22:2347–55.

    CAS  PubMed  Google Scholar 

  118. Kanis JA, Johansson H, Oden A, McCloskey EV. A meta-analysis of the efficacy of raloxifene on all clinical and vertebral fractures and its dependency on FRAX. Bone. 2010;47:729–35.

    CAS  PubMed  Google Scholar 

  119. McCloskey E, Johansson H, Oden A, Aropuu A, Jalava T, Kanis J. Efficacy of clodronate on fracture risk in women selected by 10-year fracture probability. J Bone Miner Res. 2007;22:S131.

    Google Scholar 

  120. Kanis JA, Harvey NC, McCloskey E, et al. Algorithm for the management of patients at low/middle/high risk of osteoporotic fracture: a global perspective. Osteoporos Int. 2020;31:1–12.

    CAS  PubMed  Google Scholar 

  121. Cosman F, Nieves JW, Dempster DW. Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res. 2017;32:198–202.

    CAS  PubMed  Google Scholar 

  122. Kendler DL, Marin F, Zerbini CAF, et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet. 2018;391:230–40. (Erratum Lancet 2018; 392: 2352).

    CAS  PubMed  Google Scholar 

  123. Saag KG, Petersen J, Brandi ML, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med. 2017;377:1417–27.

    CAS  PubMed  Google Scholar 

  124. Compston J, Cooper A, Cooper C, et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 2017;12:43.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Kanis JA, Cooper C, Rizzoli R, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30:3–44.

    CAS  PubMed  Google Scholar 

  126. National Institute for Health and Care Excellence (NICE). Bisphosphonates for treating osteoporosis. Technology appraisal guidance, vol. 464. London: National Institute for Health and Care Excellence; 2017. https://www.nice.org.uk/guidance/ta464. Accessed 20 Sept 2020.

    Google Scholar 

  127. Kanis JA, Rizzoli R, Cooper C, et al. Challenges for the development of bone forming agents in Europe. Calcif Tissue Int. 2014;94:469–73.

    CAS  PubMed  Google Scholar 

  128. Leder BZ, Tsai JN, Neer RM, et al. Response to therapy with teriparatide, denosumab, or both in postmenopausal women in the DATA (Denosumab and Teriparatide Administration) study randomized controlled trial. J Clin Densitom. 2016;19:346–51.

    PubMed  Google Scholar 

  129. Bone HG, Cosman F, Miller PD, et al. ACTIVExtend: 24 months of alendronate after 18 months of abaloparatide or placebo for postmenopausal osteoporosis. J Clin Endocrinol Metab. 2018;103:2949–57.

    PubMed  PubMed Central  Google Scholar 

  130. Harvey NC, McCloskey E, Kanis JA, Compston J, Cooper C. Bisphosphonates in osteoporosis: NICE and easy? Lancet. 2017;390(10109):2243–4. https://doi.org/10.1016/s0140-6736(17)32850-7.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Harvey NC, McCloskey E, Kanis JA, Compston J, Cooper C. Cost-effective but clinically inappropriate: new NICE intervention thresholds in osteoporosis (technology appraisal 464). Osteoporos Int. 2018;29(7):1511–3. https://doi.org/10.1007/s00198-018-4505-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. NICE. TA464: bisphosphonates for treating osteoporosis. London: National Institute for Health and Care Excellence; 2017.

    Google Scholar 

  133. Sims I. Many more eligible for bisphosphonates after NICE lowers threshold to 1%. PULSE. 2017. http://www.pulsetoday.co.uk/clinical/more-clinical-areas/musculoskeletal/many-more-eligible-for-bisph osphonates-after-nice-lowers-threshold-to-1/20034787.article. Accessed 26 July 2017.

  134. Kanis JA, McCloskey EV, Johansson H, Strom O, Borgstrom F, Oden A. Case finding for the management of osteoporosis with FRAX-assessment and intervention thresholds for the UK. Osteoporos Int. 2008;19(10):1395–408.

    CAS  PubMed  Google Scholar 

  135. Kanis JA, Harvey NC, Cooper C, Johansson H, Oden A, McCloskey EV, Advisory Board of the National Osteoporosis Guideline Group. A systematic review of intervention thresholds based on FRAX : a report prepared for the National Osteoporosis Guideline Group and the International Osteoporosis Foundation. Arch Osteoporos. 2016;11(1):25.

    PubMed  PubMed Central  Google Scholar 

  136. Kanis JA, Harvey NC, Cooper C, Johansson H, Oden A, McCloskey EV. A systematic review of intervention thresholds based on FRAX: a report prepared for the National Osteoporosis Guideline Group and the International Osteoporosis Foundation. Arch Osteoporos. 2016;11(1):25.

    PubMed  PubMed Central  Google Scholar 

  137. National Osteoporosis Foundation. Clinician’s guide to the prevention and treatment of osteoporosis. Washington, DC: National Osteoporosis Foundation; 2013.

    Google Scholar 

  138. Compston J, Bowring C, Cooper A, Cooper C, Davies C, Francis R, Kanis JA, Marsh D, McCloskey EV, Reid DM, Selby P. Diagnosis and management of osteoporosis in postmenopausal women and older men in the UK: National Osteoporosis Guideline Group (NOGG) update 2013. Maturitas. 2013; https://doi.org/10.1016/j.maturitas.2013.05.013.

  139. Kanis JA, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2018; https://doi.org/10.1007/s00198-018-4704-5.

  140. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013;24(1):23–57.

    CAS  PubMed  Google Scholar 

  141. Lekamwasam S, Adachi JD, Agnusdei D, Bilezikian J, Boonen S, Borgstrom F, Cooper C, Diez Perez A, Eastell R, Hofbauer LC, Kanis JA, Langdahl BL, Lesnyak O, Lorenc R, McCloskey E, Messina OD, Napoli N, Obermayer-Pietsch B, Ralston SH, Sambrook PN, Silverman S, Sosa M, Stepan J, Suppan G, Wahl DA, Compston JE. A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos Int. 2012;23(9):2257–76.

    CAS  PubMed  Google Scholar 

  142. Lekamwasam S, Adachi JD, Agnusdei D, Bilezikian J, Boonen S, Borgstrom F, Cooper C, Perez AD, Eastell R, Hofbauer LC, Kanis JA, Langdahl BL, Lesnyak O, Lorenc R, McCloskey E, Messina OD, Napoli N, Obermayer-Pietsch B, Ralston SH, Sambrook PN, Silverman S, Sosa M, Stepan J, Suppan G, Wahl DA, Compston JE. An appendix to the 2012 IOF-ECTS guidelines for the management of glucocorticoid-induced osteoporosis. Arch Osteoporos. 2012;7(1–2):25–30.

    CAS  PubMed  Google Scholar 

  143. Liu J, Curtis EM, Cooper C, Harvey NC. State of the art in osteoporosis risk assessment and treatment. J Endocrinol Investigation. 2019;42:1149–64.

    CAS  Google Scholar 

  144. Royal College of Physicians. Osteoporosis: clinical guidelines for the prevention and treatment. London: RCP; 1999. https://shop.rcplondon.ac.uk/products/osteoporosis-clinical-guidelines-for-prevention-and-treatment?variant=6634657349. Accessed 20 Sept 2020.

    Google Scholar 

  145. Kanis JA, Delmas P, Burckhardt P, et al. Guidelines for diagnosis and management of osteoporosis. Osteoporos Int. 1997;7:390–406.

    CAS  PubMed  Google Scholar 

  146. Johansson H, Oden A, Johnell O, et al. Optimisation of BMD measurements to identify high risk groups for treatment—a test analysis. J Bone Miner Res. 2004;19:906–13.

    PubMed  Google Scholar 

  147. El Miedany. Recent developments towards closing the gap in osteoporosis management. Egypt Rheumatol Rehabil. 2021;48:4.

    Google Scholar 

  148. Eastell R, Rosen CJ, Black DM, Cheung AM, Murad MH, Shoback D. Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society* clinical practice guideline. J Clin Endocrinol Metab. 2019;104(5):1595–622.

    PubMed  Google Scholar 

  149. Camacho PM, Petak SM, Binkley N, et al. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Pract. 2020;26:564–70.

    PubMed  Google Scholar 

  150. Marques A, Ferreira RJ, Santos E, Loza E, Carmona L, da Silva JA. The accuracy of osteoporotic fracture risk prediction tools: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74:1958–67.

    PubMed  Google Scholar 

  151. Michaelsson K, Melhus H, Ferm H, Ahlbom A, Pedersen NL. Genetic liability to fractures in the elderly. Arch Intern Med. 2005;165:1825–30.

    PubMed  Google Scholar 

  152. Richards JB, Zheng HF, Spector TD. Genetics of osteoporosis from genomewide association studies: advances and challenges. Nat Rev Genet. 2012;13:576–88.

    CAS  PubMed  Google Scholar 

  153. Tran BNH, Nguyen ND, Nguyen VX, Center JR, Eisman JA, Nguyen TV. Genetic profiling and individualized prognosis of fracture. J Bone Miner Res. 2011;26:414–9.

    PubMed  Google Scholar 

  154. Lee SH, Lee SW, Ahn SH, Kim T, Lim KH, Kim BJ, et al. Multiple gene polymorphisms can improve prediction of nonvertebral fracture in postmenopausal women. J Bone Miner Res. 2013;28:2156–64.

    CAS  PubMed  Google Scholar 

  155. Lee SH, Cho EH, Ahn SH, Kim HM, Lim KH, Kim BJ, et al. Prediction of future osteoporotic fracture occurrence by genetic profiling: a 6-year follow-up observational study. J Clin Endocrinol Metab. 2016;101:1215–24.

    CAS  PubMed  Google Scholar 

  156. Ho-Le TP, Center JR, Eisman JA, Nguyen HT, Nguyen TV. Prediction of bone mineral density and fragility fracture by genetic profiling. J Bone Miner Res. 2017;32:285–93.

    CAS  PubMed  Google Scholar 

  157. Eriksson J, Evans DS, Nielson CM, Shen J, Srikanth P, Hochberg M, et al. Limited clinical utility of a genetic risk score for the prediction of fracture risk in elderly subjects. J Bone Miner Res. 2015;30:184–94.

    PubMed  Google Scholar 

  158. Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom. 2009;12:170–6.

    PubMed  Google Scholar 

  159. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom. 2011;14:302–12.

    PubMed  Google Scholar 

  160. Leslie WD, Aubry-Rozier B, Lamy O, Hans D, Manitoba Bone Density Program. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab. 2013;98:602–9.

    CAS  PubMed  Google Scholar 

  161. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29:518–30.

    PubMed  Google Scholar 

  162. McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res. 2016;31:940–8.

    PubMed  Google Scholar 

  163. Akesson K, Ljunghall S, Jonsson B, Sernbo I, Johnell O, Gardsell P, et al. Assessment of biochemical markers of bone metabolism in relation to the occurrence of fracture: a retrospective and prospective population-based study of women. J Bone Miner Res. 1995;10:1823–9.

    CAS  PubMed  Google Scholar 

  164. van Daele PL, Seibel MJ, Burger H, Hofman A, Grobbee DE, van Leeuwen JP, et al. Case-control analysis of bone resorption markers, disability, and hip fracture risk: the Rotterdam study. BMJ. 1996;312:482–3.

    PubMed  PubMed Central  Google Scholar 

  165. Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C, et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res. 1996;11:1531–8.

    CAS  PubMed  Google Scholar 

  166. Meier C, Nguyen TV, Center JR, Seibel MJ, Eisman JA. Bone resorption and osteoporotic fractures in elderly men: the dubbo osteoporosis epidemiology study. J Bone Miner Res. 2005;20:579–87.

    PubMed  Google Scholar 

  167. Johansson H, Oden A, Kanis JA, McCloskey EV, Morris HA, Cooper C, et al. A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int. 2014;94:560–7.

    CAS  PubMed  Google Scholar 

  168. Eller-Vainicher C, Chiodini I, Santi I, Massarotti M, Pietrogrande L, Cairoli E, et al. Recognition of morphometric vertebral fractures by artificial neural networks: analysis from GISMO Lombardia Database. PLoS One. 2011;6:e27277.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Lin C-C, Ou Y-K, Chen S-H, Liu Y-C, Lin J. Comparison of artificial neural network and logistic regression models for predicting mortality in elderlypatients with hip fracture. Injury. 2010;41:869–73.

    PubMed  Google Scholar 

  170. Kruse C, Eiken P, Vestergaard P. Machine learning principles can improve hip fracture prediction. Calcif Tissue Int. 2017;100:348–60.

    CAS  PubMed  Google Scholar 

  171. Ho-Le TP, Center JR, Eisman JA, Nguyen TV, Nguyen HT. Prediction of hip fracture in post-menopausal women using artificial neural network approach. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:4207–10.

    Google Scholar 

  172. Shmueli G. To explain or to predict. Stat Sci. 2010;25:289–310.

    Google Scholar 

  173. Lo A, Chernoff H, Zheng T, Lo SH. Why significant variables aren't automatically good predictors. Proc Natl Acad Sci U S A. 2015;112:13892–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol. 2004;159:882–90.

    PubMed  Google Scholar 

  175. Nguyen TV, Center JR, Eisman JA. Femoral neck bone loss predicts fracture risk independent of baseline BMD. J Bone Miner Res. 2005;20:1195–201.

    PubMed  Google Scholar 

  176. Cheung E, Cheung CL, Kung AW, Tan KC. Possible FRAX-based intervention thresholds for a cohort of Chinese postmenopausal women. Osteoporos Int. 2014;25:1017–23.

    CAS  PubMed  Google Scholar 

  177. Chen XF, Li XL, Zhang H, Liu GJ. Were you identified to be at high fracture risk by FRAX(R) before your osteoporotic fracture occurred? Clin Rheumatol. 2014;33:693–8.

    PubMed  Google Scholar 

  178. Pepe J, Cipriani C, Cantatore FP, Fabbri A, Pola E, Vinicola V, Raimo O, Biamonte F, Pascone R, Ferrara C, Minisola S. The effect of parathyroid hormone (1–84) treatment on serum bone morphogenetic protein 4 and vascular endothelial growth factor in postmenopausal women with established osteoporosis. J Endocrinol Investig. 2017;40(6):663–7.

    CAS  Google Scholar 

  179. Moreira CA, Dempster DW. Histomorphometric changes following treatment for osteoporosis. J Endocrinol Investig. 2017;40(9):895–7.

    CAS  Google Scholar 

  180. Kendler DL, Marin F, Zerbini CAF, Russo LA, Greenspan SL, Zikan V, Bagur A, Malouf-Sierra J, Lakatos P, Fahrleitner-Pammer A, Lespessailles E, Minisola S, Body JJ, Geusens P, Moricke R, Lopez-Romero P. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet. 2018;391(10117):230–40.

    CAS  PubMed  Google Scholar 

  181. Tsai JN, Uihlein AV, Lee H, Kumbhani R, Siwila-Sackman E, McKay EA, Burnett-Bowie S-AM, Neer RM, Leder BZ. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. Lancet. 2013;382(9886):50–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Inderjeeth C, Raymond W. Case finding for the primary prevention of fragility fractures with FRAX (without BMD) in those over 70 years: reducing the reliance on BMD as the primary tool. Int J Clin Rheumatol. 2018;13(1):20–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Miedany, Y. (2022). Osteoporosis Risk Assessment Tools. In: El Miedany, Y. (eds) New Horizons in Osteoporosis Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87950-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87950-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87949-5

  • Online ISBN: 978-3-030-87950-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics