Skip to main content

Treat-to-Target in Osteoporosis

  • Chapter
  • First Online:
New Horizons in Osteoporosis Management

Abstract

Treat-to-target is used to manage a variety of different chronic diseases, including diabetes mellitus, hyperlipidemia, hypertension, and gouty as well as rheumatoid arthritis. The treatment targets in these diseases might be imperfect, but they provide frameworks for clinical decisions with opportunities for improving, optimizing, and harmonizing disease management and still allowing individualized treatment decisions. As some osteoporotic patients who receive standard management may not respond satisfactorily to osteoporosis therapy or continue to have an unacceptably high risk of fracture, with a treat-to-target approach, a target is established before treatment is started. This can guide selection of initial therapy with a medication or combination of medications most likely to reach that target. Decisions to stop, continue, or change therapy can be made according to progress toward that target over time. The choice of therapy should be determined by factors that include comorbidities, cost, access to therapy, and patient preference. For patients at very high risk of fracture, especially those with a recent fragility fracture, multiple fragility fractures, or very low bone mineral density (e.g., T-score < −3.5), more aggressive treatment with an osteoanabolic agent should be considered, with consideration of patient preference and cost. This chapter will discuss the treat-to-target concept in osteoporosis and potential value of goal-directed treatment and sets out several principles to guide this approach to selecting as well as monitoring treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewiecki EM, Cummings SR, Cosman F. Treat-to-target for osteoporosis: is now the time? J. Clin Endocrinol Metab. 2013;98(3):946–53.

    CAS  Google Scholar 

  2. Cummings SR, Cosman F, Eastell R, Reid IR, Mehta M, Lewiecki EM. Goal-directed treatment of osteoporosis. J Bone Miner Res. 2013;28(3):433–8.

    PubMed  Google Scholar 

  3. McCloskey E, Leslie WD. Goal-directed therapy in osteoporosis. J Bone Miner Res. 2013;28(3):439–41.

    PubMed  Google Scholar 

  4. Kanis JA, McCloskey E, Branco J, et al. Goal-directed treatment of osteoporosis in Europe. Osteoporos Int. 2014;25(11):2533–43.

    CAS  PubMed  Google Scholar 

  5. Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357.

    CAS  PubMed  Google Scholar 

  6. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2012;55(6):1577–96.

    CAS  PubMed  Google Scholar 

  7. Lamarche B, Moorjani S, Lupien PJ, et al. Apolipoprotein A-I and B levels and the risk of ischemic heart disease during a five-year follow-up of men in the Québec Cardiovascular Study. Circulation. 1996;94:273–8.

    CAS  PubMed  Google Scholar 

  8. Michael Lewiecki E, Kendler DL, Shawn Davison K, Hanley DA, Harris ST, McClung MR, Miller PD. Western osteoporosis alliance clinical practice series: treat-to-target for osteoporosis. Am J Med. 2019;132:e771–7.

    PubMed  Google Scholar 

  9. McCloskey E, Harvey N, Kanis J. Can we treat to target in osteoporosis? Int J Clin Rheumatol. 2015;10(1):1–4.

    CAS  Google Scholar 

  10. FRAX Tool. www.shef.ac.uk/FRAX

  11. Cosman F, Cauley JA, Eastell R, et al. Reassessment of fracture risk in women after 3 years of treatment with zoledronic acid: when is it reasonable to discontinue treatment? J Clin Endocrinol Metab. 2014;99(12):4546–54.

    CAS  PubMed  Google Scholar 

  12. Diez-Perez A, Adachi JD, Adami S, et al. Risk factors for treatment failure with antiosteoporosis medication: the Global Longitudinal Study of Osteoporosis in Women (GLOW). J Bone Miner Res. 2014;29(1):260–7.

    CAS  PubMed  Google Scholar 

  13. Diez-Perez A, Adachi JD, Agnusdei D, et al. Treatment failure in osteoporosis. Osteoporos Int. 2012;23(12):2769–74.

    CAS  PubMed  Google Scholar 

  14. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hochberg MC, Ross PD, Black D, et al. Larger increases in bone mineral density during alendronate therapy are associated with a lower risk of new vertebral fractures in women with postmenopausal osteoporosis. Arthritis Rheum. 1999;42(6):1246–54.

    CAS  PubMed  Google Scholar 

  16. Jacques RM, Boonen S, Cosman F, et al. Relationship of changes in total hip bone mineral density to vertebral and nonvertebral fracture risk in women with postmenopausal osteoporosis treated with once yearly zoledronic acid 5 mg: the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res. 2012;27(8):1627–34.

    CAS  PubMed  Google Scholar 

  17. Austin M, Yang YC, Vittinghoff E, et al. Relationship between bone mineral density changes with denosumab treatment and risk reduction for vertebral and nonvertebral fractures. J Bone Miner Res. 2012;27(3):687–93.

    CAS  PubMed  Google Scholar 

  18. Wasnich RD, Miller PD. Antifracture efficacy of antiresorptive agents are related to changes in bone density. J Clin Endocrinol Metab. 2000;85(1):231–6.

    CAS  PubMed  Google Scholar 

  19. Black DM, Vittinghoff E, Eastell R, et al. Hip BMD by DXA can reliably estimate reduction in hip risk in osteoporosis trials: a meta-regression. J Bone Miner Res. 2015;30(S1):S49.

    Google Scholar 

  20. Bouxsein ML, Eastell R, Lui LY, et al. Change in bone density and reduction in fracture risk: a meta-regression of published trials. J Bone Miner Res. 2019;34:632–42.

    PubMed  Google Scholar 

  21. Hochberg MC, Greenspan S, Wasnich RD, Miller P, Thompson DE, Ross PD. Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab. 2002;87(4):1586–92.

    CAS  PubMed  Google Scholar 

  22. Cummings SR, Karpf DB, Harris F, et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med. 2002;112(4):281–9.

    CAS  PubMed  Google Scholar 

  23. Black DM, Schwartz AV, Ensrud KE, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA. 2006;296(24):2927–38.

    CAS  PubMed  Google Scholar 

  24. Black DM, Reid IR, Boonen S, et al. The effect of 3 versus 6 years of zoledronic acid treatment of osteoporosis: a randomized extension to the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res. 2012;27(2):243–54.

    CAS  PubMed  Google Scholar 

  25. Schwartz AV, Bauer DC, Cummings SR, et al. Efficacy of continued alendronate for fractures in women with and without prevalent vertebral fracture: the FLEX trial. J Bone Miner Res. 2010;25(5):976–82.

    CAS  PubMed  Google Scholar 

  26. Ferrari S, Adachi JD, Lippuner K, et al. Further reductions in nonvertebral fracture rate with long-term denosumab treatment in the FREEDOM open-label extension and influence of hip bone mineral density after 3 years. Osteoporos Int. 2015;26(12):2763–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cummings SR, Cosman F, Lewiecki EM, Schousboe JT, Bauer DC, Black DM, Brown TD, Cheung AM, Cody K, Cooper C, Diez-Perez A, Eastell R, Hadji P, Hosoi T, De Beur SJ, Kagan R, Kiel DP, Reid IR, Solomon DH, Randall S. Goal-directed treatment for osteoporosis: a progress report from the ASBMR-NOF working group on goal-directed treatment for osteoporosis. J Bone Miner Res. 2017;32(1):3–10.

    CAS  PubMed  Google Scholar 

  28. Nogués X, Nolla JM, Casado E, Jódar E, Muñoz-Torres M, Quesada-Gómez JM, Canals L, Balcells M, Lizán L. Spanish consensus on treat to target for osteoporosis. Osteoporos Int. 2017. https://doi.org/10.1007/s00198-017-4310-y.

  29. Siris ES, Chen YT, Abbott TA, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108–12.

    PubMed  Google Scholar 

  30. Fink HA, Harrison SL, Taylor BC, et al. Differences in site-specific fracture risk among older women with discordant results for osteoporosis at hip and spine: study of osteoporotic fractures. J Clin Densitom. 2008;11(2):250–9.

    PubMed  PubMed Central  Google Scholar 

  31. Shepherd JA, Schousboe JT, Broy SB, Engelke K, Leslie WD. Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J Clin Densitom. 2015;18(3):274–86.

    PubMed  Google Scholar 

  32. Lewiecki EM, Binkley N, Morgan SL, et al. Best practices for dual energy X-ray absorptiometry measurement and reporting: International Society for Clinical Densitometry Guidance. J Clin Densitom. 2016;19(2):127–40.

    PubMed  Google Scholar 

  33. Murad MH, Drake MT, Mullan RJ, et al. Comparative effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J Clin Endocrinol Metab. 2012;97(6):1871–80.

    CAS  PubMed  Google Scholar 

  34. Leslie WD, Majumdar SR, Lix LM, Morin SN, Johansson H, Odén A, McCloskey EV, Kanis JA. Can change in FRAX score be used to “treat to target”? A population-based cohort study. J Bone Miner Res. 2014;29(5):1074–80. https://doi.org/10.1002/jbmr.2151.

    Article  PubMed  Google Scholar 

  35. Miedany YE, Gaafary ME, Yassaki AE, Youssef S, Nasr A, Ahmed I. Monitoring osteoporosis therapy: can FRAX help assessing success or failure in achieving treatment goals? World J Rheumatol. 2014;4(2):14–21.

    Google Scholar 

  36. Guerri-Fernandez RC, Nogues X, Quesada Gomez JM, et al. Microindentation for in vivo measurement of bone tissue material properties in atypical femoral fracture patients and controls. J Bone Miner Res. 2013;28(1):162–8.

    CAS  PubMed  Google Scholar 

  37. Keaveny TM, McClung MR, Genant HK, et al. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res. 2014;29(1):158–65.

    CAS  PubMed  Google Scholar 

  38. Harvey NC, Glüer CC, Binkley N, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone. 2015;78:216–24. https://doi.org/10.1016/j.bone.2015.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee J, Vasikaran S. Current recommendations for laboratory testing and use of bone turnover markers in management of osteoporosis. Ann Lab Med. 2012;32(2):105–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bauer DC, Black DM, Bouxsein ML, et al. Treatment-related changes in bone turnover and fracture risk reduction in clinical trials of anti-resorptive drugs: a meta-regression. J Bone Miner Res. 2018;33(4):634–42.

    CAS  PubMed  Google Scholar 

  41. Johansson H, Oden A, Kanis JA, et al. A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int. 2014;94(5):560–7.

    CAS  PubMed  Google Scholar 

  42. Adler RA, El-Hajj Fuleihan G, Bauer DC, et al. Managing osteoporosis in patients on long-term bisphosphonate treatment: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2016;31(1):16–35.

    CAS  PubMed  Google Scholar 

  43. Johnell O, Kanis JA, Oden A, et al. Fracture risk following an osteoporotic fracture. Osteoporos Int. 2004;15(3):175–9.

    CAS  PubMed  Google Scholar 

  44. Schousboe JT, Fink HA, Lui LY, Taylor BC, Ensrud KE. Association between prior non-spine non-hip fractures or prevalent radiographic vertebral deformities known to be at least 10 years old and incident hip fracture. J Bone Miner Res. 2006;21(10):1557–64.

    PubMed  Google Scholar 

  45. Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. JAMA. 2001;285:320–3.

    CAS  PubMed  Google Scholar 

  46. Ryg J, Rejnmark L, Overgaard S, Brixen K, Vestergaard P. Hip fracture patients at risk of second hip fracture: a nationwide population based cohort study of 169,145 cases during 1977-2001. J Bone Miner Res. 2009;24(7):1299–307.

    PubMed  Google Scholar 

  47. van Geel TA, Huntjens KM, van den Bergh JP, Dinant GJ, Geusens PP. Timing of subsequent fractures after an initial fracture. Curr Osteoporos Rep. 2010;8(3):118–22.

    PubMed  PubMed Central  Google Scholar 

  48. Center JR, Bliuc D, Nguyen TV, Eisman JA. Risk of subsequent fracture after low-trauma fracture in men and women. JAMA. 2007;297(4):387–94.

    CAS  PubMed  Google Scholar 

  49. Clinton J, Franta A, Polissar NL, et al. Proximal humeral fracture as a risk factor for subsequent hip fractures. J Bone Joint Surg Am. 2009;91(3):503–11.

    PubMed  PubMed Central  Google Scholar 

  50. Giangregorio LM, Leslie WD, Manitoba Bone Density Program. Time since prior fracture is a risk modifier for 10-year osteoporotic fractures. J Bone Miner Res. 2010;25(6):1400–5.

    PubMed  Google Scholar 

  51. Siris ES, Harris ST, Rosen CJ, et al. Adherence to bisphosphonate therapy and fracture rates in osteoporotic women: relationship to vertebral and nonvertebral fractures from 2 US claims databases. Mayo Clin Proc. 2006;81(8):1013–22.

    PubMed  Google Scholar 

  52. Freemantle N, Satram-Hoang S, Tang ET, et al. Final results of the DAPS (Denosumab Adherence Preference Satisfaction) study: a 24-month, randomized, crossover comparison with alendronate in postmenopausal women. Osteoporos Int. 2012;23(1):317–26.

    CAS  PubMed  Google Scholar 

  53. Hadji P, Felsenberg D, Amling M, Hofbauer LC, Kandenwein JA, Kurth A. The non-interventional BonViva Intravenous Versus Alendronate (VIVA) study: real-world adherence and persistence to medication, efficacy, and safety, in patients with postmenopausal osteoporosis. Osteoporos Int. 2014;25(1):339–47.

    CAS  PubMed  Google Scholar 

  54. Cosman F, de Beur SJ, LeBoff MS, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Watts NB, Bilezikian JP, Camacho PM, et al. American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Pract. 2010;16(Suppl 3):1–37.

    PubMed  PubMed Central  Google Scholar 

  56. Siminoski K, Jiang G, Adachi JD, et al. Accuracy of height loss during prospective monitoring for detection of incident vertebral fractures. Osteoporos Int. 2005;16(4):403–10.

    CAS  PubMed  Google Scholar 

  57. Boonen S, Ferrari S, Miller PD, et al. Postmenopausal osteoporosis treatment with antiresorptives: effects of discontinuation or long-term continuation on bone turnover and fracture risk—a perspective. J Bone Miner Res. 2012;27(5):963–74.

    CAS  PubMed  Google Scholar 

  58. McClung MR. Cancel the denosumab holiday. Osteoporos Int. 2016;27(5):1677–82.

    CAS  PubMed  Google Scholar 

  59. Schousboe JT, Ensrud KE, Nyman JA, Kane RL, Melton LJ 3rd. Cost effectiveness of vertebral fracture assessment to detect prevalent vertebral deformity and select postmenopausal women with a femoral neck T-score > −2.5 for alendronate therapy: a modelling study. J Clin Densitom. 2006;9(2):133–43.

    PubMed  Google Scholar 

  60. Black DM, Bauer DC, Schwartz AV, Cummings SR, Rosen CJ. Continuing bisphosphonate treatment for osteoporosis—for whom and for how long? N Engl J Med. 2012;366(22):2051–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bonnick SL. Going on a drug holiday? J Clin Densitom. 2011;14(4):377–83.

    PubMed  Google Scholar 

  62. Watts NB, Chines A, Olszynski WP, et al. Fracture risk remains reduced one year after discontinuation of risedronate. Osteoporos Int. 2008;19:365–72.

    CAS  PubMed  Google Scholar 

  63. McClung M, Harris S, Miller P, et al. Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med. 2013;126(1):13–20.

    CAS  PubMed  Google Scholar 

  64. Cummings SR, Ferrari S, Eastell R, et al. Vertebral fractures after discontinuation of denosumab: a post hoc analysis of the randomized placebo-controlled FREEDOM trial and its extension. J Bone Miner Res. 2018;33(2):190–8.

    CAS  PubMed  Google Scholar 

  65. Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19(6):733–59.

    CAS  PubMed  Google Scholar 

  66. Watts NB, Diab DL. Long-term use of bisphosphonates in osteoporosis. J Clin Endocrinol Metab. 2010;95(4):1555–65.

    CAS  PubMed  Google Scholar 

  67. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH. Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone. 2006;38(5):617–27.

    CAS  PubMed  Google Scholar 

  68. Rodan G, Reszka A, Golub E, Rizzoli R. Bone safety of long-term bisphosphonate treatment. Curr Med Res Opin. 2004;20(8):1291–300.

    CAS  PubMed  Google Scholar 

  69. Ström O, Landfeldt E, Garellick G. Residual effect after oral bisphosphonate treatment and healthy adherer effects--the Swedish Adherence Register Analysis (SARA). Osteoporos Int. 2015;26(1):315–25.

    PubMed  Google Scholar 

  70. Korean Endocrine Society. Osteoporosis fact sheet 2014. 2014. [cited by 2015 September 1]. Available from: http://www.endocrinology.or.kr/image/main/kor_Osteoporosis_Fact_Sheet2014.pdf

  71. Lee SH, Gong HS, Kim TH, et al. Position statement: drug holiday in osteoporosis treatment with bisphosphonates in South Korea. J Bone Metab. 2015;22(4):167–74.

    PubMed  PubMed Central  Google Scholar 

  72. Miedany YE. Treat to target for osteoporosis: another step forward. Curr Rheumatol Rev. 2014;10(2):99–105.

    PubMed  Google Scholar 

  73. Compston J, Bilezikian J. Bisphosphonate therapy for osteoporosis: the long and short of it. J Bone Miner Res. 2012;27:240–2.

    PubMed  Google Scholar 

  74. Diab DL, Watts NB. Bisphosphonate drug holiday: who, when and how long. Ther Adv Musculoskelet Dis. 2013;5(3):107–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kanis JA, Oden A, Johnell O, Jonsson B, de Laet C, Dawson A. The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int. 2001;12(5):417–27.

    CAS  PubMed  Google Scholar 

  76. Siris ES, Adler R, Bilezikian J, et al. The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporos Int. 2014;25(5):1439–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Health Quality Ontario. Prevention of falls and fall-related injuries in community-dwelling seniors: an evidence-based analysis. Ont Health Technol Assess Ser. 2008;8(2):1–78.

    Google Scholar 

  78. McClure R, Turner C, Peel N, Spinks A, Eakin E, Hughes K. Population based interventions for the prevention of fall-related injuries in older people. Cochrane Database Syst Rev. 2005;(1):CD004441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Miedany, Y., Bahlas, S. (2022). Treat-to-Target in Osteoporosis. In: El Miedany, Y. (eds) New Horizons in Osteoporosis Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87950-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87950-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87949-5

  • Online ISBN: 978-3-030-87950-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics