Skip to main content

Neuroimaging and Sonography of Neurocutaneous Disorders

  • Chapter
  • First Online:
Neurocutaneous Disorders

Abstract

Many of the neurocutaneous syndromes are associated with neoplasm, hamartoma, or other abnormal growth. Computer tomography, magnetic resonance imaging, MR neurography, and ultrasound are used to evaluate the alterations. This chapter gives an overview on the application of different imaging techniques for diagnosis of neurofibromatoses including schwannomatosis, tuberous sclerosis, von Hippel-Lindau disease, Sturge-Weber syndrome, ataxia telangiectasia, hereditary hemorrhagic telangiectasia, and Klippel-Trénaunay syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Creange A, Zeller J, Rostaing-Rigattieri S, et al. Neurological complications of neurofibromatosis type 1 in adulthood. Brain. 1999;122:473–81.

    Article  PubMed  Google Scholar 

  2. Chourmouzi D, Papadopoulou E, Konstantinidis M, et al. Manifestations of pilocytic astrocytoma: a pictorial review. Insights Imaging. 2014;5:387–402.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Panigrahy A, Krieger MD, Gonzalez-Gomez I, et al. Quantitative short echo time 1H-MR spectroscopy of untreated pediatric brain tumors: preoperative diagnosis and characterization. AJNR Am J Neuroradiol. 2006;27:560–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahlawat S, Blakeley JO, Langmead S, et al. Current status and recommendations for imaging in neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis. Skelet Radiol. 2020;49:199–219.

    Article  Google Scholar 

  5. Bekiesińska-Figatowska M, Brągoszewska H, Duczkowski M, et al. Circle of Willis abnormalities in children with neurofibromatosis type 1. Neurol Neurochir Pol. 2014;48:15–20.

    Article  PubMed  Google Scholar 

  6. Wiebe S, Munoz DG, Smith S, Lee DH. Meningioangiomatosis. A comprehensive analysis of clinical and laboratory features. Brain. 1999;122:709–26.

    Article  PubMed  Google Scholar 

  7. Mautner VF, Hartmann M, Kluwe L, et al. MRI growth patterns of plexiform neurofibromas in patients with neurofibromatosis type 1. Neuroradiology. 2006;24:1–6.

    Google Scholar 

  8. Steen RG, Taylor JS, Langston JW, et al. Prospective evaluation of the brain in asymptomatic children with neurofibromatosis type 1: relationship of macrocephaly to T1 relaxation changes and structural brain abnormalities. AJNR Am J Neuroradiol. 2001;22:810–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsirikos AI, Ramachandran M, Lee J, Saifuddin A. Assessment of vertebral scalloping in neurofibromatosis type 1 with plain radiography and MRI. Clin Radiol. 2004;59:1009–17.

    Article  CAS  PubMed  Google Scholar 

  10. Otsuka H, Graham MM, Kubo A, Nishitani H. FDG-PET/CT findings of sarcomatous transformation in neurofibromatosis: a case report. Ann Nucl Med. 2005;19:55–8.

    Article  PubMed  Google Scholar 

  11. Kresbach C, Dorostkar MM, Suwala AK, et al. Neurofibromatosis type 2 predisposes to ependymomas of various localization, histology, and molecular subtype. Acta Neuropathol. 2021;141:971–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pinto Gama HP, da Rocha AJ, Braga FT, da Silva CJ. Comparative analysis of MR sequences to detect structural brain lesions in tuberous sclerosis. Pediatr Radiol. 2006;36:119–25.

    Article  PubMed  Google Scholar 

  13. Baron Y, Barkovich AJ. MR imaging of tuberous sclerosis in neonates and young infants. AJNR Am J Neuroradiol. 1999;20:907–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vaughn J, Hagiwara M, Katz J, et al. MRI characterization and longitudinal study of focal cerebellar lesions in a young tuberous sclerosis cohort. AJNR Am J Neuroradiol. 2013;34:655–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ostrowsky-Coste K, Neal A, Guenot M, et al. Resective surgery in tuberous Sclerosis complex, from Penfield to 2018: a critical review. Rev Neurol (Paris). 2019;175:163–82.

    Article  CAS  Google Scholar 

  16. Mukonoweshuro W, Wilkinson ID, Griffiths PD. Proton MR spectroscopy of cortical tubers in adults with tuberous sclerosis complex. AJNR Am J Neuroradiol. 2001;22:1920–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Peters JM, Taquet M, Prohl AK, et al. Diffusion tensor imaging and related techniques in tuberous sclerosis complex: review and future directions. Future Neurol. 2013;8:583–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lonergan G, Smirniotopoulos J. Case 64: tuberous sclerosis. Radiology. 2003;229:385–8.

    Article  PubMed  Google Scholar 

  19. Comi AM. Advances in Sturge-Weber syndrome. Curr Opin Neurol. 2006;19:124–8.

    Article  PubMed  Google Scholar 

  20. Desai S, Glasier CN. Sturge-Weber syndrome. Engl J Med. 2017;377:e11.

    Article  Google Scholar 

  21. Cakirer S, Yagmurlu B, Savas MR. Sturge-Weber syndrome: diffusion magnetic resonance imaging and proton magnetic resonance spectroscopy findings. Acta Radiol. 2005;46:407–10.

    Article  CAS  PubMed  Google Scholar 

  22. Adams ME, Aylett SE, Squier W, Chong W. A spectrum of unusual neuroimaging findings in patients with suspected Sturge-Weber syndrome. AJNR Am J Neuroradiol. 2009;30:276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luat AF, Juhász C, Loeb JA, et al. Neurological complications of Sturge-Weber syndrome: current status and unmet needs. Pediatr Neurol. 2019;8:31–8.

    Article  Google Scholar 

  24. Zallmann M, Leventer RJ, Mackay MT, et al. Screening for Sturge-Weber syndrome: a state-of-the-art review. Pediatr Dermatol. 2018;35:30–42.

    Article  PubMed  Google Scholar 

  25. Maher ER, Neumann HP, Richard S. von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet. 2011;19:617–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ling H, Cybulla M, Schaefer O, et al. When to look for Von Hippel-Lindau disease in gastroenteropancreatic neuroendocrine tumors? Neuroendocrinology. 2004;80(Suppl 1):39–46.

    Article  CAS  PubMed  Google Scholar 

  27. Opocher G, Conton P, Schiavi F, et al. Pheochromocytoma in von Hippel-Lindau disease and neurofibromatosis type 1. Fam Cancer. 2005;4:13–6.

    Article  PubMed  Google Scholar 

  28. Rothblum-Oviatt C, Wright J, Lefton-Greif MA, et al. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11:159.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tavani F, Zimmerman RA, Berry GT, et al. Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI. Neuroradiology. 2003;45:315–9.

    Article  CAS  PubMed  Google Scholar 

  30. Dineen RA, Raschke F, McGlashan HL, et al. Multiparametric cerebellar imaging and clinical phenotype in childhood ataxia telangiectasia. Neuroimage Clin. 2020;25:102–10.

    Article  Google Scholar 

  31. Tortora A, Riccioni ME, Gaetani E, et al. Rendu-Osler-Weber disease: a gastroenterologist’s perspective. Orphanet J Rare Dis. 2019;14:130.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Saleh M, Carter MT, Latino GA, et al. Brain arteriovenous malformations in patients with hereditary hemorrhagic telangiectasia: clinical presentation and anatomical distribution. Pediatr Neurol. 2013;49:445–50.

    Article  PubMed  Google Scholar 

  33. John PR. Klippel-Trenaunay syndrome. Tech Vasc Interv Radiol. 2019;22:100634.

    Article  PubMed  Google Scholar 

  34. Antignani PL, Lee BB, Baroncelli TA, et al. IUA-ISVI consensus for diagnosis guideline of chronic lymphedema of the limbs. Int Angiol. 2015;34:311–32.

    PubMed  Google Scholar 

  35. Abdel Razek AAK. Radiological aspect of Klippel-Trénaunay syndrome: a case series with review of literature. J Comput Assist Tomogr. 2019;43:786–92.

    Article  PubMed  Google Scholar 

  36. Alwalid O, Makamure J, Cheng QG, et al. Radiological aspect of Klippel-Trénaunay Syndrome: a case series with review of literature. Curr Med Sci. 2018;38:925–31.

    Article  PubMed  Google Scholar 

  37. Lee BB, Antignani PL, Baraldini V, et al. ISVI-IUA consensus document diagnostic guidelines of vascular anomalies: vascular malformations and hemangiomas. Int Angiol. 2015;34:333–7.

    CAS  PubMed  Google Scholar 

  38. Baumer P, Mautner VF, Baumer T, et al. Accumulation of non-compressive fascicular lesions underlies NF2 polyneuropathy. J Neurol. 2013;260:38–46.

    Article  CAS  PubMed  Google Scholar 

  39. Farschtschi S, Mautner VF, Pham M, et al. Multifocal nerve lesions and LZTR1 germline mutations in segmental schwannomatosis. Ann Neurol. 2016;80:625–8.

    Article  CAS  PubMed  Google Scholar 

  40. Godel T, Baumer P, Farschtschi S, et al. Peripheral nervous system alterations in infant and adult neurofibromatosis type 2. Neurology. 2019;93:e590–e8.

    Article  CAS  PubMed  Google Scholar 

  41. Godel T, Mautner VF, Farschtschi S, et al. Dorsal root ganglia volume differentiates schwannomatosis and neurofibromatosis 2. Ann Neurol. 2018;83:854–7.

    Article  PubMed  Google Scholar 

  42. Winter N, Rattay TW, Axer H, et al. Ultrasound assessment of peripheral nerve pathology in neurofibromatosis type 1 and 2. Clin Neurophysiol. 2017;128:702–6.

    Article  PubMed  Google Scholar 

  43. Telleman JA, Stellingwerff MD, Brekelmans GJ, Visser LH. Nerve ultrasound shows subclinical peripheral nerve involvement in neurofibromatosis type 2. Muscle Nerve. 2018;57:312–6.

    Article  CAS  PubMed  Google Scholar 

  44. Baumer P, Dombert T, Staub F, et al. Ulnar neuropathy at the elbow: MR neurography—nerve T2 signal increase and caliber. Radiology. 2011;260:199–206.

    Article  PubMed  Google Scholar 

  45. Godel T, Baumer P, Pham M, et al. Human dorsal root ganglion in vivo morphometry and perfusion in Fabry painful neuropathy. Neurology. 2017;89:1274–82.

    Article  PubMed  Google Scholar 

  46. Bendszus M, Stoll G. Technology insight: visualizing peripheral nerve injury using MRI. Nat Clin Pract Neurol. 2005;1:45–53.

    Article  PubMed  Google Scholar 

  47. Godel T, Pham M, Heiland S, Bendszus M, Baumer P. Human dorsal-root-ganglion perfusion measured in-vivo by MRI. Neuroimage. 2016;141:81–7.

    Article  PubMed  Google Scholar 

  48. Baumer P, Pham M, Ruetters M, et al. Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology. 2014;273:185–93.

    Article  PubMed  Google Scholar 

  49. Godel T, Pham M, Kele H, et al. Diffusion tensor imaging in anterior interosseous nerve syndrome—functional MR Neurography on a fascicular level. Neuroimage Clin. 2019;21:101659.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhai H, Lv Y, Kong X, Liu X, Liu D. Magnetic resonance neurography appearance and diagnostic evaluation of peripheral nerve sheath tumors. Sci Rep. 2019;9:6939.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wasa J, Nishida Y, Tsukushi S, et al. MRI features in the differentiation of malignant peripheral nerve sheath tumors and neurofibromas. AJR Am J Roentgenol. 2010;194:1568–74.

    Article  PubMed  Google Scholar 

  52. Schulz A, Grafe P, Hagel C, et al. Neuropathies in the setting of Neurofibromatosis tumor syndromes: complexities and opportunities. Exp Neurol. 2018;299(Pt B):334–44.

    Article  PubMed  Google Scholar 

  53. Sperfeld AD, Hein C, et al. Occurrence and characterization of peripheral nerve involvement in neurofibromatosis type 2. Brain. 2002;125(Pt 5):996–1004.

    Article  CAS  PubMed  Google Scholar 

  54. Gehlhausen JR, Park SJ, Hickox AE, et al. A murine model of neurofibromatosis type 2 that accurately phenocopies human schwannoma formation. Hum Mol Genet. 2015;24:1–8.

    Article  CAS  PubMed  Google Scholar 

  55. Lavin MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol. 2008;9:759–69.

    Article  CAS  PubMed  Google Scholar 

  56. Schierbeck J, Vestergaard T, Bygum A. Skin cancer associated genodermatoses: a literature review. Acta Derm Venereol. 2019;99:360–9.

    Article  CAS  PubMed  Google Scholar 

  57. Yew YW, Giordano CN, Spivak G, Lim HW. Understanding photodermatoses associated with defective DNA repair: photosensitive syndromes without associated cancer predisposition. J Am Acad Dermatol. 2016;75:873–82.

    Article  PubMed  Google Scholar 

  58. Yeoh TY, Wittwer ED, Weingarten TN, Sprung J. Anesthesia and LEOPARD syndrome: a review of forty-nine anesthetic exposures. J Cardiothorac Vasc Anesth. 2014;28:1243–50.

    Article  PubMed  Google Scholar 

  59. Dwivedi D, Sheshadri K, Tandon U, Chakraborty S. Klippel-Trenaunay syndrome: a rare entity with anesthesia concerns. J Clin Anesth. 2016;35:233–4.

    Article  PubMed  Google Scholar 

  60. Isaacs H. Perinatal (fetal and neonatal) tuberous sclerosis: a review. Am J Perinatol. 2009;26:755–60.

    Article  PubMed  Google Scholar 

  61. Karagianni A, Karydakis P, Giakoumettis D, et al. Fetal subependymal giant cell astrocytoma: a case report and review of the literature. Surg Neurol Int. 2020;11:26.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Leibovitz Z, Guibaud L, et al. The cerebellar “tilted telephone receiver sign” enables prenatal diagnosis of PHACES syndrome. Eur J Paediatr Neurol. 2018;22:900–9.

    Article  PubMed  Google Scholar 

  63. Massoud M, Cagneaux M, Garel C, et al. Prenatal unilateral cerebellar hypoplasia in a series of 26 cases: significance and implications for prenatal diagnosis. Ultrasound Obstet Gynecol. 2014;44:447–54.

    Article  CAS  PubMed  Google Scholar 

  64. Haratz KK, Oliveira Szejnfeld P, Govindaswamy M, et al. Prenatal diagnosis of rhombencephalosynapsis: neuroimaging features and severity of vermian anomaly. Ultrasound Obstet Gynecol. 2021.

    Google Scholar 

  65. Cagneaux M, Paoli V, Blanchard G. Pre- and postnatal imaging of early cerebral damage in Sturge-Weber syndrome. Pediatr Radiol. 2013;43:1536–9.

    Article  PubMed  Google Scholar 

  66. Tanaka K, Miyazaki N, Matsushima M, et al. Prenatal diagnosis of Klippel-Trenaunay-Weber syndrome with Kasabach-Merritt syndrome in utero. J Med Ultrason. 2001;2015(42):109–12.

    Google Scholar 

  67. Yu D, Sun L, Chen T. Prenatal ultrasound diagnosis of Klippel-Trenaunay-Weber syndrome associated with umbilical cord hemangioma. J Clin Ultrasound. 2021;49:254–6.

    Article  PubMed  Google Scholar 

  68. Biard JM, Steenhaut P, Bernard P, et al. Antenatal diagnosis of cardio-facio-cutaneous syndrome: prenatal characteristics and contribution of fetal facial dysmorphic signs in utero. About a case and review of literature. Eur J Obstet Gynecol Reprod Biol. 2019;240:232–41.

    Article  PubMed  Google Scholar 

  69. Nyberg RH, Uotila J, Kirkinen P, Rosendahl H. Macrocephaly-cutis marmorata telangiectatica congenita syndrome—prenatal signs in ultrasonography. Prenat Diagn. 2005;25:129–32.

    Article  CAS  PubMed  Google Scholar 

  70. Nowaczyk MJ, Mernagh JR, Bourgeois JM, et al. Antenatal and postnatal findings in encephalocraniocutaneous lipomatosis. Am J Med Genet. 2000;91:261–6.

    Article  CAS  PubMed  Google Scholar 

  71. Hwang M, Barnewolt CE, Jüngert J, et al. Contrast-enhanced ultrasound of the pediatric brain. Pediatr Radiol. 2021.

    Google Scholar 

  72. Hanes I, Muir K, Abdeen N, Sell E. Tuberous sclerosis complex associated intracranial lesion found by antenatal ultrasound. Radiol Case Rep. 2020;15:816–8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. van Baalen A, Stephani U, Jansen O. Confirmation of tuberous sclerosis complex by high-resolution ultrasonography. J Child Neurol. 2006;21:741–2.

    Article  PubMed  Google Scholar 

  74. Ebrahimi-Fakhari D, Mann LL, Poryo M, et al. Incidence of tuberous sclerosis and age at first diagnosis: new data and emerging trends from a national, prospective surveillance study. Orphanet J Rare Dis. 2018;13:117.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ugalahi M, Olusanya B, Fasina O, et al. Delleman syndrome: a case report from West Africa—features and the challenges of management. Niger Postgrad Med J. 2018;25:191–4.

    Article  PubMed  Google Scholar 

  76. Parazzini C, Triulzi F, Russo G, et al. Encephalocraniocutaneous lipomatosis: complete neuroradiologic evaluation and follow-up of two cases. AJNR Am J Neuroradiol. 1999;20:173–6.

    CAS  PubMed  Google Scholar 

  77. Grimalt R, Ermacora E, Mistura L, et al. Encephalocraniocutaneous lipomatosis: case report and review of the literature. Pediatr Dermatol. 1993;10:164–8.

    Article  CAS  PubMed  Google Scholar 

  78. Chen YA, Woodley-Cook J, Sgro M, Bharatha A. Sonographic and magnetic resonance imaging findings of neurocutaneous melanosis. Radiol Case Rep. 2016;11:29–32.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yakut ZI, Bas AY, Turan A, et al. Early sonographic diagnosis of neurocutaneous melanosis in a newborn. Iran J Radiol. 2014;11:e10107.

    PubMed  PubMed Central  Google Scholar 

  80. Johnson JM, Patten LL, Robson CD, Teele RL. Ultrasonographic detection of intracranial melanocytosis in an infant. Pediatr Radiol. 2010;40:210–4.

    Article  PubMed  Google Scholar 

  81. Auriemma A, Agostinis C, Bianchi P, et al. Hemimegalencephaly in hypomelanosis of Ito: early sonographic pattern and peculiar MR findings in a newborn. Eur J Ultrasound. 2000;12:61–7.

    Article  CAS  PubMed  Google Scholar 

  82. Ferraz A, Morais S, Mimoso G. Role of the cerebral ultrasound in a case of Sturge-Weber syndrome. BMJ Case Rep. 2019;12:e227834.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Paschoal JK, Paschoal FM Jr, de Lima FT, et al. Detection of cerebral vasculopathy by transcranial Doppler in children with neurofibromatosis type 1. J Child Neurol. 2016;31:351–6.

    Article  PubMed  Google Scholar 

  84. Jiménez-Legido M, Martínez-de-Azagra-Garde A, Bernardino-Cuesta B, et al. Utility of the transcranial doppler in the evaluation and follow-up of children with Sturge-Weber Syndrome. Eur J Paediatr Neurol. 2020;27:60–6.

    Article  PubMed  Google Scholar 

  85. Offermann EA, Sreenivasan A, DeJong MR, et al. Reliability and clinical correlation of transcranial Doppler ultrasound in Sturge-Weber Syndrome. Pediatr Neurol. 2017;74:15–23.e5.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Adams RJ, McKie VC, Brambilla D, et al. Stroke prevention trial in sickle cell anemia. Control Clin Trials. 1998;19:110–29.

    Article  CAS  PubMed  Google Scholar 

  87. Brant AJ, James HE, Tung H. Cutaneomeningospinal angiomatosis (Cobb syndrome) with tethered cord. Pediatr Neurosurg. 1999;30:93–5.

    Article  CAS  PubMed  Google Scholar 

  88. Jagła M, Szymońska I, Kruczek P. Sonographic findings in a neonate with Cobb syndrome. J Clin Ultrasound. 2013;41:258–60.

    Article  PubMed  Google Scholar 

  89. Chen W, Jia JW, Wang JR. Soft tissue diffuse neurofibromas: sonographic findings. J Ultrasound Med. 2007;26:513–8.

    Article  PubMed  Google Scholar 

  90. Winter N, Dohrn MF, Wittlinger J, et al. Role of high-resolution ultrasound in detection and monitoring of peripheral nerve tumor burden in neurofibromatosis in children. Childs Nerv Syst. 2020;36:2427–32.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Telleman JA, Stellingwerff MD, Brekelmans GJ, Visser LH. Nerve ultrasound: a useful screening tool for peripheral nerve sheath tumors in NF1? Neurology. 2017;88:1615–22.

    Article  PubMed  Google Scholar 

  92. Telleman JA, Stellingwerff MD, Brekelmans GJ, Visser LH. Nerve ultrasound in neurofibromatosis type 1: a follow-up study. Clin Neurophysiol. 2018;129:354–9.

    Article  PubMed  Google Scholar 

  93. de Keizer RJ, de Wolff-Rouendaal D, Bots GT, et al. Optic glioma with intraocular tumor and seeding in a child with neurofibromatosis. Am J Ophthalmol. 1989;108:717–25.

    Article  PubMed  Google Scholar 

  94. Freedman SF, Elner VM, Donev I, et al. Intraocular neurilemmoma arising from the posterior ciliary nerve in neurofibromatosis. Pathologic findings. Ophthalmology. 1988;95:1559–64.

    Article  CAS  PubMed  Google Scholar 

  95. Shields JA, Pellegrini M, Kaliki S, et al. Retinal vasoproliferative tumors in 6 patients with neurofibromatosis type 1. JAMA Ophthalmol. 2014;132:190–6.

    Article  PubMed  Google Scholar 

  96. Morales J, Chaudhry IA, Bosley TM. Glaucoma and globe enlargement associated with neurofibromatosis type 1. Ophthalmology. 2009;116:1725–30.

    Article  PubMed  Google Scholar 

  97. Plateroti AM, Plateroti R, Mollo R, et al. Sturge-Weber syndrome associated with monolateral ocular melanocytosis, iris mammillations, and diffuse choroidal haemangioma. Case Rep Ophthalmol. 2017;8:375–84.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yang Y, Guo X, Xu J, et al. Phakomatosis pigmentovascularis associated with Sturge-Weber syndrome, ota nevus, and congenital glaucoma. Medicine (Baltimore). 2015;94:e1025.

    Article  Google Scholar 

  99. Ledesma-Gil G, Essilfie J, Freund KB, et al. Detection of occult arteriovenous malformation with annular array ultrasonography. Ophthalmic Surg Lasers Imaging Retina. 2020;51:239–43.

    Article  PubMed  Google Scholar 

  100. Sarrafpour S, Tsui E, Mehta N, Modi YS, Finger PT. Choroidal hemangioma in a black patient with Sturge-Weber syndrome: challenges in diagnosis. Ophthalmic Surg Lasers Imaging Retina. 2019;50:183–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos P. Panteliadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panteliadis, C.P. et al. (2022). Neuroimaging and Sonography of Neurocutaneous Disorders. In: Panteliadis, C.P., Benjamin, R., Hagel, C. (eds) Neurocutaneous Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-87893-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87893-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87892-4

  • Online ISBN: 978-3-030-87893-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics