Skip to main content

The Improvement of Machining Process Scheduling with the Use of Heuristic Algorithms

  • Conference paper
  • First Online:
16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021) (SOCO 2021)

Abstract

The article discusses the problem of scheduling the production process, the degree of complexity of which depends largely on the variety of resources used in the process under study. The more resources are involved in the implementation of the production process and the more they can be used interchangeably, the more complex and problematic the scheduling process becomes. In this case, the use of traditional scheduling methods, based on simple calculations or the know-how of process engineers, often turns out to be insufficient to achieve the intended results. The research carried out in the study includes the use of heuristic methods in the scheduling process, which allow to analyze many factors at the same time, based on calculations without the influence of the human factor. The aim of the study was to check whether the use of heuristic methods in production scheduling allows to achieve the eligible results. The results of the research show that in most of the studied cases, the schedule generated by the use of algorithms turned out to better than the schedules developed with the existing methods, in the context of the objective criterion of study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Więcek, D., Więcek D., Kuric, I.: Cost estimation methods of machine elements at the design stage in unit and small lot production conditions. Manag. Syst. Prod. Eng. (2019)

    Google Scholar 

  2. Zhang, H., Xie, J., Ge, J., Zhang, Z., Zong, B.: A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar. Eur. J. Oper. Res. 272(3), 868–878 (2019)

    Article  MathSciNet  Google Scholar 

  3. Jiang, Y.: Linear Integer Programming for Power System Recovery Following Outages, Washington State University (2016)

    Google Scholar 

  4. Melo, M., Nickel, S., Saldanha-da Gama, F.: A Tabu search heuristic for redesigning a multi-echelon supply chain network over a planning horizon. Int. J. Prod. Econ. 136(1), 218–230 (2012)

    Google Scholar 

  5. Zheng, Y., Xiao, Y., Seo, Y.: A Tabu search algorithm for simultaneous machine/agv scheduling problem. Int. J. Prod. Res. 52(19), 5748–5763 (2014)

    Article  Google Scholar 

  6. Beausoleil, R.P.: “MOSS” multiobjective scatter search applied to non-linear multiple criteria optimization. Eur. J. Oper. Res. 169(2), 426–449 (2006)

    Article  MathSciNet  Google Scholar 

  7. Naderi, B., Ruiz, R.: A scatter search algorithm for the distributed permutation flowshop scheduling problem. Eur. J. Oper. Res. 239(2), 323–334 (2014)

    Article  MathSciNet  Google Scholar 

  8. Damm, R.B., Resende, M.G., Ronconi, D.P.: A biased random key genetic algorithm for the field technician scheduling problem. Comput. Oper. Res. 75, 49–63 (2016)

    Article  MathSciNet  Google Scholar 

  9. Zhang, R., Ong, S., Nee, A.Y.: A simulation-based genetic algorithm approach for remanufacturing process planning and scheduling. Appl. Soft Comput. 37, 521–532 (2015)

    Article  Google Scholar 

  10. Franzin, A., Stutzle, T.: Revisiting simulated annealing: a component-based analysis. Comput. Oper. Res. 104, 191–206 (2019)

    Article  MathSciNet  Google Scholar 

  11. Bożejko, W., Pempera, J., Wodecki, M.: Parallel simulated annealing algorithm for cyclic flexible job shop scheduling problem. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 603–612. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19369-4_53

    Chapter  Google Scholar 

  12. Pan, Q.-K., Ruiz, R.: An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem. Omega 44, 41–50 (2014)

    Article  Google Scholar 

  13. Talbi, E.-G.: Metaheuristics: From Design to Implementation, vol. 74. Wiley (2009)

    Google Scholar 

  14. Ahmadian, M.M., Salehipour, A., Cheng, T.C.E.: A meta-heuristic to solve the just-in-time job-shop scheduling problem. Eur. J. Oper. Res. 288(1), 14–29 (2021)

    Article  MathSciNet  Google Scholar 

  15. Kochańska, J., Musial, K., Burduk, A.: Rationalization of decision-making process in selection of suppliers with use of the greedy and Tabu Search algorithms. In: Burduk, A., Chlebus, E., Nowakowski, T., Tubis, A. (eds.) ISPEM 2018. AISC, vol. 835, pp. 275–284. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97490-3_27

    Chapter  Google Scholar 

  16. Gola, A., Kłosowski, G.: Application of fuzzy logic and genetic algorithms in automated works transport organization. In: Omatu, S., Rodríguez, S., Villarrubia, G., Faria, P., Sitek, P., Prieto, J. (eds.) DCAI 2017, AISC, vol. 620, pp. 29–36. Springer, Cham (2018)

    Google Scholar 

  17. Kumanan S., Jegan Jose, G., Raja, K.: Multi-project scheduling using an heuristic and a genetic algorithm. 31(3-4), 360–366 (2006). https://doi.org/10.1007/s00170-005-0199-2

  18. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)

    Google Scholar 

  19. Glover, F.: Tabu search—Part I. ORSA J. Comput. 1(3), 190–206 (1989)

    Google Scholar 

  20. Musiał, K., Kotowska, J., Górnicka, D., Burduk, A.: Tabu search and greedy algorithm adaptation to logistic task. In: Saeed, K., Homenda, W., Chaki, R. (eds.) CISIM 2017. LNCS, vol. 10244, pp. 39–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59105-6_4

    Chapter  Google Scholar 

  21. Box, G.E.P.: Evolutionary operation: a method for increasing industrial productivity. Appl. Stat. 6(2), 81 (1957)

    Google Scholar 

  22. Friedberg, R.M.: A learning machine: Part I. IBM J. Res. Dev. 2(1), 2–13 (1958)

    Google Scholar 

  23. Hayes-Roth, F.: Review of “adaptation in natural and artificial systems by John H. Holland”, the U. of Michigan Press, 1975. ACM SIGART Bull. 53, 15 (1975)

    Google Scholar 

  24. Burduk, A., Musiał, K.: Genetic algorithm adoption to transport task optimization. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds.) SOCO/CISIS/ICEUTE -2016. AISC, vol. 527, pp. 366–375. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47364-2_35

    Chapter  Google Scholar 

  25. Kramer, O.: Genetic Algorithm Essentials. SCI, vol. 679. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52156-5

    Book  MATH  Google Scholar 

  26. Matai, R., Singh, S., Mittal, M.: Modified simulated annealing based approach for multi objective facility layout problem. Int. J. Prod. Res. 51(14), 4273–4288 (2013)

    Article  Google Scholar 

  27. Fu, Z., Huang, W., Lu, Z.: Iterated Tabu search for the circular open dimension problem. Eur. J. Oper. Res. 225(2), 236–243 (2013)

    Article  MathSciNet  Google Scholar 

  28. Pawlak, M. Algorytmy ewolucyjne jako narzędzie harmonogramowania produkcji. Wydawnictwo Naukowe PWN (1999)

    Google Scholar 

  29. Hulett, M., Damodaran, P., Amouie, M.: Scheduling nonidentical parallel batch processing machines to minimize total weighted tardiness using particle swarm optimization. Comput. Ind. Eng. 113, 425–436 (2017)

    Article  Google Scholar 

  30. Tzeng, G.-H., Huang, J.-J.: Multiple Attribute Decision Making: Methods and Applications. Chapman and Hall/CRC (2011)

    Google Scholar 

  31. Arbib, C., Marinelli, F., Pezzella, F.: An lp-based Tabu search for batch scheduling in a cutting process with finite buffers. Int. J. Prod. Econ. 136(2), 287–296 (2012)

    Article  Google Scholar 

  32. Zegordi, S., Nia, M.B.: A multi-population genetic algorithm for transportation scheduling. Transp. Res. Part E: Logist. Transp. Rev. 45(6), 946–959 (2009)

    Article  Google Scholar 

  33. Dunker, T., Radons, G., Westkamper, E.: A coevolutionary algorithm for a facility layout problem. Int. J. Prod. Res. 41(15), 3479–3500 (2003)

    Article  Google Scholar 

  34. Paes, F.G., Pessoa, A.A., Vidal, T.: A hybrid geneticalgorithm with decomposition phases for the unequal area facility layout problem. Eur. J. Oper. Res. 256(3), 742–756 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Burduk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burduk, A., Łampika, Ł., Łapczyńska, D., Musiał, K. (2022). The Improvement of Machining Process Scheduling with the Use of Heuristic Algorithms. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. https://doi.org/10.1007/978-3-030-87869-6_73

Download citation

Publish with us

Policies and ethics