Skip to main content

Visual Mining of Industrial Gas Turbines Sensor Data as an Industry 4.0 Application

  • Conference paper
  • First Online:
16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021) (SOCO 2021)

Abstract

Industrial gas turbines for power generation are advanced engines that require constant and detailed monitorization using internal and external sensors. These sensors generate a large flow of data in the form of multivariate time series that are amenable to analysis using pattern recognition methods with the objective of improving and optimizing turbine operation. One aspect this may take is visual analytics, where dimensionality reduction methods can be used to intuitively visualize the multivariate time series. This brief paper provides a proof of concept and some case scenarios of a visual turbine-monitorization tool, based on the UMAP method, combined with clustering using HDBSCAN and unsupervised Agnostic Feature Selection. It can be considered as a first step towards a data-centered approach to gas turbine management within the industry 4.0 framework, based on the mining of turbine sensor data.

This research was funded by Siemens Energy Industrial Applications Division. We are particularly grateful to D. Naderi and E. Bahilo from the Data Analytics department in Finspang, O. Pozo and A. Celano from the DigiHub Barcelona, E. Joelsson from the Remote Diagnostic Center and the Data Platform team for their help and technical expertise. We also thank M. De Castro for information concerning types of turbine deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2020)

  2. Wirth, R., Hipp, J.: CRISP-DM: towards a standard process model for data mining. In: Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining (OAKDD), Vol. 1. Springer, London (2000)

    Google Scholar 

  3. Huber, S., Wiemer, H., Schneider, D., Ihlenfeldt, S.: DMME: data mining methodology for engineering applications-a holistic extension to the CRISP-DM model. Procedia CIRP 79, 403–408 (2019)

    Article  Google Scholar 

  4. Culot, G., Nassimbeni, G., Orzes, G., Sartor, M.: Behind the definition of industry 4.0: analysis and open questions. Int. J. Prod. Econ. 226, 107617 (2020)

    Article  Google Scholar 

  5. Sacha, D., et al.: What you see is what you can change: human-centered machine learning by interactive visualization. Neurocomputing 268, 164–175 (2017)

    Article  Google Scholar 

  6. Vellido, A.: The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput. Appl. 32(24), 18069–18083 (2020). https://doi.org/10.1007/s00521-019-04051-w

    Article  Google Scholar 

  7. Volponi, A.J., DePold, H., Ganguli, R., Daguang, C.: The use of Kalman filter and neural network methodologies in gas turbine performance diagnostics: a comparative study. J. Eng. Gas Turbines Power 125, 917–24 (2003)

    Article  Google Scholar 

  8. Ogaji, S.O.T., Marinai, L., Sampath, S., Singh, R., Prober, S.D.: Gas-turbine fault diagnostics: a fuzzy-logic approach. Appl. Energy 82, 81–89 (2005)

    Article  Google Scholar 

  9. Li, Y.G., Ghafir, M.F.A., Wang, L., Singh, R., Huang, K., Feng, X.: Nonlinear multiple points gas turbine off-design performance adaptation using a genetic algorithm. J. Eng. Gas Turbines Power 133, 071701-1–071701-9 (2011)

    Google Scholar 

  10. Yan, W., Yu, L.: On accurate and reliable anomaly detection for gas turbine combustors: a deep learning approach. arXiv preprint arXiv:1908.09238 (2019)

  11. Luo, H., Zhong, S.: Gas turbine engine gas path anomaly detection using deep learning with Gaussian distribution. In: Prognostics and System Health Management Conference (PHM), Harbin, pp. 1–6. IEEE (2017)

    Google Scholar 

  12. Diaz, M.J., Fullmer, D.D., Briceno, S.I., Mavris, D.N.: A collaborative approach to complex systems engineering using a web-based visual analytics framework. In: 55th AIAA Aerospace Sciences Meeting, p. 0872 (2017)

    Google Scholar 

  13. Srinivasan, K., Bhaumik, S.K., Valliappan, L.: Towards visualisation of capacity, bearing thrust load and reaction variation with aerofoil skew in a gas turbine. In: Proceedings of the ASME 2019 Gas Turbine India Conference 2019, p. V001T02A010 (2019)

    Google Scholar 

  14. Igie, U., Diez-Gonzalez, P., Giraud, A., Minervino, O.: Evaluating gas turbine performance using machine-generated data: quantifying degradation and impacts of compressor washing. J. Eng. Gas Turbines Power 138(12), 122601 (2016)

    Article  Google Scholar 

  15. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  16. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) Advances in Knowledge Discovery and Data Mining, PAKDD 2013. Lecture Notes in Computer Science, vol. 7819. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_14

  17. Doquet, G., Sebag, M.: Agnostic feature selection. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019. Lecture Notes in Computer Science, vol. 11906. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46150-8_21

  18. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Hoboken (2004)

    Google Scholar 

  19. McInnes, L., Healy, J.: Accelerated hierarchical density based clustering. In: IEEE ICDMW 2017, pp. 33–42. IEEE (2017)

    Google Scholar 

  20. https://mydisk.cs.upc.edu/s/jRTDfDpPR9KXfYL

  21. Olier, I., Vellido, A.: A variational formulation for GTM through time. In: IEEE International Joint Conference on Neural Networks, pp. 516–521 (2008)

    Google Scholar 

  22. Hernández, C.X., Wayment-Steele, H.K., Sultan, M.M., Husic, B.E., Pande, V.S.: Variational encoding of complex dynamics. Phys. Rev. E 97(6), 062412 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel X. Astudillo Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Astudillo Aguilar, A.X., Rosso, S., Gibert, K., Vellido, A. (2022). Visual Mining of Industrial Gas Turbines Sensor Data as an Industry 4.0 Application. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. https://doi.org/10.1007/978-3-030-87869-6_10

Download citation

Publish with us

Policies and ethics