Skip to main content

Abstract

Concept Drift is one of the main problems presents in data stream processing for Data Mining and Machine Learning. This study focuses on Virtual Concept Drift. A common approach includes i) the detection of the drift with a specialized algorithm, and ii) the adaptation of the model to the current scenario. This work studies how well-known pre-processing methods affect abrupt Virtual Concept Drift detection in data streams. The proposed pre-processing techniques are: i) deleting the trend and ii) transforming the data stream from time to spectral domain. Moreover, three Virtual Concept Drift detection methods are compared over three publicly available data sets. According to the results, a slight improvement in the detection of Virtual Concept Drift is achieved when the trend is deleted. In contrast, no detection of Virtual Concept Drift is reported on the spectral domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) Advances in Artificial Intelligence, SBIA 2004. Lecture Notes in Computer Science, vol. 3171. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29

  2. Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., Ghédira, K.: Discussion and review on evolving data streams and concept drift adapting. Evolving Syst. 9(1), 1–23 (2016). https://doi.org/10.1007/s12530-016-9168-2

    Article  Google Scholar 

  3. Webb, G.I., Lee, L.K., Goethals, B., Petitjean, F.: Analyzing concept drift and shift from sample data. Data Min. Knowl. Disc. 32(5), 1179–1199 (2018). https://doi.org/10.1007/s10618-018-0554-1

    Article  MathSciNet  Google Scholar 

  4. Gama, J., Žliobaite I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 1–44 (2014). https://doi.org/10.1007/s10618-018-0554-1

  5. Gama, J., Castillo, G.: Learning with local drift detection. In: Li, X., Zaïane, O.R., Li, Z. (eds.) Advanced Data Mining and Applications. ADMA 2006. Lecture Notes in Computer Science, vol. 4093. Springer, Heidelberg (2006). https://doi.org/10.1007/11811305_4

  6. Baena-Garcia, M., Del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldà, R., Morales-Bueno, R.: Early drift detection method. In: International Workshop on Knowledge Discovery from Data Streams, pp. 77–86 (2006)

    Google Scholar 

  7. Gao, J., Fan, W., Han, J., Yu, P.: A general framework for mining concept-drifting data streams with skewed distributions. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 3–14 (2007). https://doi.org/10.1137/1.9781611972771.1

  8. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2019). https://doi.org/10.1109/TKDE.2018.2876857

    Article  Google Scholar 

  9. De Barros, R., Garrido, S., Santo, C.: An overview and comprehensive comparison of ensembles for concept drift. Inf. Fusion 52, 213–244 (2019). https://doi.org/10.1016/j.inffus.2019.03.006

    Article  Google Scholar 

  10. Žliobaite, I.: Learning under concept drift: an overview. arXiv (2010). https://arxiv.org/abs/1010.4784

  11. Sobolewski, P., Wozniak, M.: Comparable study of statistical tests for virtual concept drift detection. In: Proceedings of the 8th International Conference on Computer Recognition Systems, pp. 329–337 (2013). https://doi.org/10.1007/978-3-319-00969-8_32

  12. Souza, V.M.A., Parmezan, A.R.S., Chowdhury, F.A., Mueen, A.: Efficient unsupervised drift detector for fast and high-dimensional data streams. Knowl. Inf. Syst. 63(6), 1497–1527 (2021). https://doi.org/10.1007/s10115-021-01564-6

    Article  Google Scholar 

  13. Oliveira, G., Cavalcante, R., Cabral, G., Minku, L., Oliveira, A.: Time series forecasting in the presence of concept drift: a PSO-based approach. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 239–246 (2017). https://doi.org/10.1109/ICTAI.2017.00046

  14. Baier, L., Hofmann, M., Kuhl, N., Mohr, N., Satzger, G.: Handling concept drifts in regression problems-the error intersection approach. In: Proceedings of 15th International Conference on Wirtschaftsinformatik (2020)

    Google Scholar 

  15. Ramírez-Gallego, S., Krawczyk, B., García, S., Woźniak, M., Herrera, F.: A survey on data preprocessing for data stream mining: current status and future directions. Neurocomputing 239, 39–57 (2017). https://doi.org/10.1016/j.neucom.2017.01.078

    Article  Google Scholar 

  16. Cooley, J., Lewis, P., Welch, P.: The finite Fourier transform. IEEE Trans. Audio Electroacoust. 17(2), 77–85 (1969). https://doi.org/10.1109/TAU.1969.1162036

    Article  MathSciNet  Google Scholar 

  17. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: SIAM International Conference on Data Mining, pp. 443–448 (2007). https://doi.org/10.1137/1.9781611972771.42

  18. Dunn, O.: Multiple comparisons among means. J. Am. Stat. Assoc. 56(293), 52–64 (1961). https://doi.org/10.1080/01621459.1961.10482090

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, Z., Wang, W.: Concept drift detection based on Kolmogorov-Smirnov test. In: Liang, Q., Wang, W., Mu, J., Liu, X., Na, Z., Chen, B. (eds.) Artificial Intelligence in China. Lecture Notes in Electrical Engineering, vol. 572. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0187-6_31

  20. Raab, C., Heusinger, M., Schleif, F.: Reactive soft prototype computing for concept drift streams. Neurocomputing 416, 340–351 (2020). https://doi.org/10.1016/j.neucom.2019.11.111

    Article  Google Scholar 

  21. Misra, S., Biswas, D., Saha, S., Mazumdar, C.: Applying Fourier inspired windows for concept drift detection in data stream. In: Proceedings of 2020 IEEE Calcutta Conference (CALCON), pp. 152–156 (2020). https://doi.org/10.1109/CALCON49167.2020.9106537

  22. Bhattacharyya, A.: On the measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–109 (1943)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This project has been founded by ICE (Junta de Castilla y León) under project CCTT3/20/BU/0002 and by the Spanish Ministry of Science and Innovation under project MINECO-TIN2017-84804-R, PID2020-112726RB-I00 and by the Regional Government of Andalusia, program “Personal Investigador Doctor”, reference DOC_00235.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel L. González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González, M.L., Sedano, J., García-Vico, Á.M., Villar, J.R. (2022). A Comparison of Techniques for Virtual Concept Drift Detection. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. https://doi.org/10.1007/978-3-030-87869-6_1

Download citation

Publish with us

Policies and ethics