Skip to main content

Cold Physical Plasma: A Short Introduction

  • Chapter
  • First Online:
Textbook of Good Clinical Practice in Cold Plasma Therapy

Abstract

Physical plasma is considered as the fourth state of matter and forms from a gas by further energy input. Cold plasmas, where only a small percentage of the atoms or molecules are ionized, are highly non-equilibrium systems, where most of the energy couple to the free electrons. In dependence on the discharge conditions, ultraviolet, visible and infrared radiation, and additional electrical fields are formed. Due to their controllability by electrical operation parameters, cold plasmas have found entrance in almost all areas of research, production, and conversion processes. Most recently, the field of plasma medicine was established both in biomedical research and in clinical application. Here, cold plasmas are used to investigate and treat conditions connected to increased microbial burdens or inflammatory processes such as chronic and acute wounds, cancers and precancerous lesions, and other disorders with involvement of the immune system. In the chapter at hand, the history of cold physical plasmas in medicine, the principles of their generation, and their composition are described. Finally, relevant applications and research efforts beyond the medical themes covered in the textbook are introduced briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    7 https://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Chemical_Bonding/Fundamentals_of_Chemical_Bonding/Bond_Energies.

  2. 2.

    7 http://www.icnirp.org/en/frequencies/uv/index.html.

Literature

  1. Mott-Smith HM. History of plasmas. Nature. 1971;233(5316):219.

    Article  CAS  PubMed  Google Scholar 

  2. Graves DB. Lessons from tesla for plasma medicine. IEEE Trans Radiat Plasma Med Sci. 2018;2(6):594–607.

    Article  Google Scholar 

  3. Brenni P. Les courants à haute-fréquence apprivoisés à travers la darsonvalisation et les spectacles publics (1890-1930). Annales historiques de l’électricité. 2010;8(1):53.

    Article  Google Scholar 

  4. Collins AF. An easily-made high-frequency apparatus. Sci Am. 1907;63(1618supp):25929.

    Article  Google Scholar 

  5. Reif-Acherman S. Jacques Arsene d’Arsonval: his life and contributions to electrical instrumentation in physics and medicine. Part iii: high-frequency experiences and the beginnings of diathermy [scanning our past]. Proc IEEE. 2017;105(2):394–404.

    Article  Google Scholar 

  6. Napp J, Daeschlein G, Napp M, von Podewils S, Gumbel D, Spitzmueller R, et al. On the history of plasma treatment and comparison of microbiostatic efficacy of a historical high-frequency plasma device with two modern devices. GMS Hyg Infect Control. 2015;10:Doc08.

    PubMed  PubMed Central  Google Scholar 

  7. Schnee A. Kompendium der Hochfrequenz in ihren verschiedenen Anwendungsformen einschliesslich der Diathermie. O. Nemnich; 1920.

    Google Scholar 

  8. Rhees DJ. Electricity – “the greatest of all doctors”: an introduction to “high frequency oscillators for electro-therapeutic and other purposes”. Proc IEEE. 1999;87(7):1277–81.

    Article  Google Scholar 

  9. Monell SH. High frequency electric currents in medicine and dentistry: their nature and actions and simplified uses in external treatments. New York: William R. Jenkins Company; 1910.

    Google Scholar 

  10. Laroussi M. Sterilization of contaminated matter with an atmospheric pressure plasma. IEEE Trans Plasma Sci. 1996;24(3):1188–91.

    Article  CAS  Google Scholar 

  11. Stoffels E, Flikweert AJ, Stoffels WW, Kroesen GMW. Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sources Sci Technol. 2002;11(4):383–8.

    Article  CAS  Google Scholar 

  12. Stoffels E, Kieft IE, Sladek REJ. Superficial treatment of mammalian cells using plasma needle. J Phys D Appl Phys. 2003;36(23):2908–13.

    Article  CAS  Google Scholar 

  13. Kieft IE, Broers JL, Caubet-Hilloutou V, Slaaf DW, Ramaekers FC, Stoffels E. Electric discharge plasmas influence attachment of cultured CHO K1 cells. Bioelectromagnetics. 2004;25(5):362–8.

    Article  CAS  PubMed  Google Scholar 

  14. Sosnin EA, Stoffels E, Erofeev MV, Kieft IE, Kunts SE. The effects of UV irradiation and gas plasma treatment on living mammalian cells and bacteria: a comparative approach. IEEE Trans Plasma Sci. 2004;32(4):1544–50.

    Article  Google Scholar 

  15. Stoffels E, Sladek REJ, Kieft IE. Gas plasma effects on living cells. Phys Scr. 2004;T107(5):79–82.

    Article  CAS  Google Scholar 

  16. Kieft IE, Kurdi M, Stoffels E. Reattachment and apoptosis after plasma-needle treatment of cultured cells. IEEE Trans Plasma Sci. 2006;34(4):1331–6.

    Article  CAS  Google Scholar 

  17. Stoffels E, Gonzalvo YA, Whitmore TD, Seymour DL, Rees JA. A plasma needle generates nitric oxide. Plasma Sources Sci Technol. 2006;15(3):501–6.

    Article  CAS  Google Scholar 

  18. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A. Applied plasma medicine. Plasma Process Polym. 2008;5(6):503–33.

    Article  CAS  Google Scholar 

  19. Kalghatgi SU, Fridman G, Fridman A, Friedman G, Clyne AM. Non-thermal dielectric barrier discharge plasma treatment of endothelial cells. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:3578–81.

    Google Scholar 

  20. Dobrynin D, Fridman G, Friedman G, Fridman A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys. 2009;11(11):115020.

    Article  Google Scholar 

  21. Kalghatgi SU, Fridman A, Friedman G, Clyne AM. Cell proliferation following non-thermal plasma is related to reactive oxygen species induced fibroblast growth factor-2 release. Conf Proc IEEE Eng Med Biol Soc. 2009;1:6030–3.

    Google Scholar 

  22. Kalghatgi S, Friedman G, Fridman A, Clyne AM. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth Factor-2 release. Ann Biomed Eng. 2010;38(3):748–57.

    Article  PubMed  Google Scholar 

  23. Dobrynin D, Fridman G, Friedman G, Fridman A, editors. Physical mechanisms of plasma assisted wound healing: production and delivery of active species. Slovakia: Demanovska dolina; 2011.

    Google Scholar 

  24. Kalghatgi S, Kelly CM, Cerchar E, Torabi B, Alekseev O, Fridman A, et al. Effects of non-thermal plasma on mammalian cells. PLoS One. 2011;6(1):e16270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robert E, Sarron V, Ries D, Dozias S, Vandamme M, Pouvesle JM. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun. Plasma Sources Sci Technol. 2012;21(3):34017.

    Article  Google Scholar 

  26. Collet G, Robert E, Lenoir A, Vandamme M, Darny T, Dozias S, et al. Plasma jet-induced tissue oxygenation: potentialities for new therapeutic strategies. Plasma Sources Sci Technol. 2014;23(1):012005.

    Article  CAS  Google Scholar 

  27. Pouvesle JM, Robert E, editors. Non thermal atmospheric plasma jets: a new way for cancer treatment? GD2008 Conference Proceedings; 2014.

    Google Scholar 

  28. von Woedtke T, Kramer A, Weltmann K-D. Plasma sterilization: what are the conditions to meet this claim? Plasma Process Polym. GD2008 Conference Proceedings. 2008;5(6):534–9.

    Google Scholar 

  29. Bender C, Matthes R, Kindel E, Kramer A, Lademann J, Weltmann KD, et al. The irritation potential of nonthermal atmospheric pressure plasma in the HET-CAM. Plasma Process Polym. 2010;7(3–4):318–26.

    Article  CAS  Google Scholar 

  30. Wende K, Landsberg K, Lindequist U, Weltmann KD, von Woedtke T. Distinctive activity of a nonthermal atmospheric-pressure plasma jet on eukaryotic and prokaryotic cells in a cocultivation approach of keratinocytes and microorganisms. IEEE Trans Plasma Sci. 2010;38(9):2479–85.

    Article  CAS  Google Scholar 

  31. Haertel B, Wende K, von Woedtke T, Weltmann KD, Lindequist U. Non-thermal atmospheric-pressure plasma can influence cell adhesion molecules on HaCaT-keratinocytes. Exp Dermatol. 2011;20(3):282–4.

    Article  PubMed  Google Scholar 

  32. Bekeschus S, von Woedtke T, Kramer A, Weltmann K-D, Masur K. Cold physical plasma treatment alters redox balance in human immune cells. Plasma Med. 2013;3(4):267–78.

    Article  Google Scholar 

  33. Bundscherer L, Bekeschus S, Tresp H, Hasse S, Reuter S, Weltmann K-D, et al. Viability of human blood leukocytes compared with their respective cell lines after plasma treatment. Plasma Med. 2013;3(1–2):71–80.

    Article  Google Scholar 

  34. Schmidt A, Wende K, Bekeschus S, Bundscherer L, Barton A, Ottmuller K, et al. Non-thermal plasma treatment is associated with changes in transcriptome of human epithelial skin cells. Free Radic Res. 2013;47(8):577–92.

    Article  CAS  PubMed  Google Scholar 

  35. Winter J, Wende K, Masur K, Iseni S, Dunnbier M, Hammer MU, et al. Feed gas humidity: a vital parameter affecting a cold atmospheric-pressure plasma jet and plasma-treated human skin cells. J Phys D Appl Phys. 2013;46(29):295401.

    Article  Google Scholar 

  36. Lademann O, Richter H, Meinke MC, Patzelt A, Kramer A, Hinz P, et al. Drug delivery through the skin barrier enhanced by treatment with tissue-tolerable plasma. Exp Dermatol. 2011;20(6):488–90.

    Article  PubMed  Google Scholar 

  37. Lademann O, Richter H, Kramer A, Patzelt A, Meinke MC, Graf C, et al. Stimulation of the penetration of particles into the skin by plasma tissue interaction. Laser Phys Lett. 2011;8(10):758–64.

    Article  CAS  Google Scholar 

  38. Lademann O, Richter H, Patzelt A, Alborova A, Humme D, Weltmann KD, et al. Application of a plasma-jet for skin antisepsis: analysis of the thermal action of the plasma by laser scanning microscopy. Laser Phys Lett. 2010;7(6):458–62.

    Article  Google Scholar 

  39. Lademann J, Richter H, Alborova A, Humme D, Patzelt A, Kramer A, et al. Risk assessment of the application of a plasma jet in dermatology. J Biomed Opt. 2009;14(5):054025.

    Article  PubMed  Google Scholar 

  40. Teichmann A, Heuschkel S, Jacobi U, Presse G, Neubert RH, Sterry W, et al. Comparison of stratum corneum penetration and localization of a lipophilic model drug applied in an o/w microemulsion and an amphiphilic cream. Eur J Pharm Biopharm. 2007;67(3):699–706.

    Article  CAS  PubMed  Google Scholar 

  41. von Woedtke T, Schmidt A, Bekeschus S, Wende K, Weltmann KD. Plasma medicine: a field of applied redox biology. In Vivo. 2019;33(4):1011–26.

    Article  Google Scholar 

  42. Weltmann KD, von Woedtke T. Plasma medicine-current state of research and medical application. Plasma Phys Controlled Fusion. 2017;59(1):014031.

    Article  Google Scholar 

  43. Graves DB. Mechanisms of plasma medicine: coupling plasma physics, biochemistry, and biology. IEEE Trans Radiat Plasma Med Sci. 2017;1(4):281–92.

    Article  Google Scholar 

  44. Meichsner J, Schmidt M, Schneider R, Wagner HE. Nonthermal plasma chemistry and physics. Boca Raton: CRC Press; 2013.

    Google Scholar 

  45. Loveless AM, Garner AL. A universal theory for gas breakdown from microscale to the classical Paschen law. Phys Plasmas. 2017;24(11):113522.

    Article  Google Scholar 

  46. Reuter S, von Woedtke T, Weltmann KD. The kINPen-a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J Phys D Appl Phys. 2018;51(23):233001.

    Article  Google Scholar 

  47. Weltmann KD, von Woedtke T. Basic requirements for plasma sources in medicine. Eur Phys J Appl Phys. 2011;55(1):13807.

    Article  Google Scholar 

  48. Winter J, Brandenburg R, Weltmann KD. Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol. 2015;24(6):064001.

    Article  Google Scholar 

  49. Bruggeman PJ, Iza F, Brandenburg R. Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Sci Technol. 2017;26(12):123002.

    Article  Google Scholar 

  50. Winter J, Nishime TMC, Bansemer R, Balazinski M, Wende K, Weltmann KD. Enhanced atmospheric pressure plasma jet setup for endoscopic applications. J Phys D Appl Phys. 2019;52(2):024005.

    Article  Google Scholar 

  51. Kunhardt EE. Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas. IEEE Trans Plasma Sci. 2000;28(1):189–200.

    Article  Google Scholar 

  52. Wittenberg HH. Gas tube design. Electron tube design. Harrison: Radio Corporation of America; 1962. p. 792–817.

    Google Scholar 

  53. Wattieaux G, Yousfi M, Merbahi N. Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure. Spectrochim Acta B At Spectrosc. 2013;89:66–76.

    Article  CAS  Google Scholar 

  54. Jablonowski H, Bussiahn R, Hammer MU, Weltmann KD, von Woedtke T, Reuter S. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids. Phys Plasmas. 2015;22(12):122008.

    Article  Google Scholar 

  55. Lange H, Foest R, Schafer J, Weltmann KD. Vacuum UV radiation of a plasma jet operated with rare gases at atmospheric pressure. IEEE Trans Plasma Sci. 2009;37(6):859–65.

    Article  CAS  Google Scholar 

  56. Fingerhut BP, Herzog TT, Ryseck G, Haiser K, Graupner FF, Heil K, et al. Dynamics of ultraviolet-induced DNA lesions: Dewar formation guided by pre-tension induced by the backbone. New J Phys. 2012;14(6):065006.

    Article  Google Scholar 

  57. Stinson CA, Xia Y. Radical induced disulfide bond cleavage within peptides via ultraviolet irradiation of an electrospray plume. Analyst. 2013;138(10):2840–6.

    Article  CAS  PubMed  Google Scholar 

  58. Protection ICoN-IR. Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Phys. 2004;87(2):171–86.

    Article  Google Scholar 

  59. Jablonowski H, Bussiahn R, Hammer MU, Weltmann K-D, von Woedtke T, Reuter S. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids. Phys Plasmas. 2015;22(12):122008.

    Article  Google Scholar 

  60. Lackmann JW, Schneider S, Edengeiser E, Jarzina F, Brinckmann S, Steinborn E, et al. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J R Soc Interface. 2013;10(89):20130591.

    Article  PubMed  PubMed Central  Google Scholar 

  61. von Woedtke T, Julich WD, Thal S, Diederich M, Stieber M, Kindel E. Antimicrobial efficacy and potential application of a newly developed plasma-based ultraviolet irradiation facility. J Hosp Infect. 2003;55(3):204–11.

    Article  Google Scholar 

  62. Judee F, Wattieaux G, Merbahi N, Mansour M, Castanie-Cornet MP. The antibacterial activity of a microwave argon plasma jet at atmospheric pressure relies mainly on UV-C radiations. J Phys D Appl Phys. 2014;47(40):405201.

    Article  Google Scholar 

  63. Hoffmann G, Hartel M, Mercer JB. Heat for wounds - water-filtered infrared-a (wIRA) for wound healing - a review. Ger Med Sci. 2016;14:Doc08.

    PubMed  PubMed Central  Google Scholar 

  64. Daeschlein G, Rutkowski R, Lutze S, von Podewils S, Sicher C, Wild T, et al. Hyperspectral imaging: innovative diagnostics to visualize hemodynamic effects of cold plasma in wound therapy. Biomed Tech (Berl). 2018;63(5):603–8.

    Article  CAS  Google Scholar 

  65. Kisch T, Schleusser S, Helmke A, Mauss KL, Wenzel ET, Hasemann B, et al. The repetitive use of non-thermal dielectric barrier discharge plasma boosts cutaneous microcirculatory effects. Microvasc Res. 2016;106:8–13.

    Article  PubMed  Google Scholar 

  66. Darny T, Pouvesle JM, Puech V, Douat C, Dozias S, Robert E. Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements. Plasma Sources Sci Technol. 2017;26(4):045008.

    Article  Google Scholar 

  67. Schmidt-Bleker A, Norberg SA, Winter J, Johnsen E, Reuter S, Weltmann KD, et al. Propagation mechanisms of guided streamers in plasma jets: the influence of electronegativity of the surrounding gas. Plasma Sources Sci Technol. 2015;24(3):035022.

    Article  Google Scholar 

  68. Gaborit G, Jarrige P, Lecoche F, Dahdah J, Duraz E, Volat C, et al. Single shot and vectorial characterization of intense electric field in various environments with pigtailed electrooptic probe. IEEE Trans Plasma Sci. 2014;42(5):1265–73.

    Article  Google Scholar 

  69. Nuccitelli R. Application of pulsed electric fields to cancer therapy. Bioelectricity. 2019;1(1):30–4.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Griseti E, Kolosnjaj-Tabi J, Gibot L, Fourquaux I, Rols MP, Yousfi M, et al. Pulsed electric field treatment enhances the cytotoxicity of plasma-activated liquids in a three-dimensional human colorectal cancer cell model. Sci Rep. 2019;9(1):7583.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Steuer A, Wolff CM, von Woedtke T, Weltmann KD, Kolb JF. Cell stimulation versus cell death induced by sequential treatments with pulsed electric fields and cold atmospheric pressure plasma. PLoS One. 2018;13(10):e0204916.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Keidar M, Shashurin A, Volotskova O, Stepp MA, Srinivasan P, Sandler A, et al. Cold atmospheric plasma in cancer therapy. Phys Plasmas. 2013;20(5):057101.

    Article  Google Scholar 

  73. Yusupov M, Van der Paal J, Neyts EC, Bogaerts A. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes. Biochim Biophys Acta. 2017;1861(4):839–47.

    Article  CAS  Google Scholar 

  74. Wolff CM, Kolb JF, Weltmann KD, von Woedtke T, Bekeschus S. Combination treatment with cold physical plasma and pulsed electric fields augments ROS production and cytotoxicity in lymphoma. Cancers (Basel). 2020;12(4):845.

    Article  CAS  Google Scholar 

  75. Azan A, Gailliègue F, Mir LM, Breton M. Cell membrane Electropulsation: chemical analysis of cell membrane modifications and associated transport mechanisms. In: Transport across natural and modified biological membranes and its implications in physiology and therapy. Cham: Springer; 2017. p. 59–71.

    Chapter  Google Scholar 

  76. Golda J, Held J, Redeker B, Konkowski M, Beijer P, Sobota A, et al. Concepts and characteristics of the ‘COST reference microplasma jet’. J Phys D Appl Phys. 2016;49(8):084003.

    Article  Google Scholar 

  77. Adamovich I, Baalrud SD, Bogaerts A, Bruggeman PJ, Cappelli M, Colombo V, et al. The 2017 plasma roadmap: low temperature plasma science and technology. J Phys D Appl Phys. 2017;50(32):323001.

    Article  Google Scholar 

  78. Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, et al. Plasma-liquid interactions: a review and roadmap. Plasma Sources Sci Technol. 2016;25(5):053002.

    Article  Google Scholar 

  79. Graves DB. Reactive species from cold atmospheric plasma: implications for cancer therapy. Plasma Process Polym. 2014;11(12):1120–7.

    Article  CAS  Google Scholar 

  80. Graves DB. Low temperature plasma biomedicine: a tutorial review. Phys Plasmas. 2014;21(8):080901.

    Article  Google Scholar 

  81. Schmidt-Bleker A, Winter J, Bosel A, Reuter S, Weltmann KD. On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device. Plasma Sources Sci Technol. 2016;25(1):015005.

    Article  Google Scholar 

  82. Callaghan S, Senge MO. The good, the bad, and the ugly – controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy. Photochem Photobiol Sci. 2018;17(11):1490–514.

    Article  CAS  PubMed  Google Scholar 

  83. Fan W, Huang P, Chen X. Overcoming the Achilles’ heel of photodynamic therapy. Chem Soc Rev. 2016;45(23):6488–519.

    Article  CAS  PubMed  Google Scholar 

  84. Reuter S, Niemi K, Schulz-von der Gathen V, Dobele HF. Generation of atomic oxygen in the effluent of an atmospheric pressure plasma jet. Plasma Sources Sci Technol. 2009;18(1):015006.

    Article  Google Scholar 

  85. Schulz-von der Gathen V, Schaper L, Knake N, Reuter S, Niemi K, Gans T, et al. Spatially resolved diagnostics on a microscale atmospheric pressure plasma jet. J Phys D Appl Phys. 2008;41(19):194004.

    Article  Google Scholar 

  86. Knake N, Reuter S, Niemi K, Schulz-von der Gathen V, Winter J. Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet. J Phys D Appl Phys. 2008;41(19):6.

    Article  Google Scholar 

  87. Schulz-von der Gathen V, Buck V, Gans T, Knake N, Niemi K, Reuter S, et al. Optical diagnostics of micro discharge jets. Contrib Plasma Physics. 2007;47(7):510–9.

    Article  CAS  Google Scholar 

  88. Waskoenig J, Niemi K, Knake N, Graham LM, Reuter S, Schulz-von der Gathen V, et al. Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet. Plasma Sources Sci Technol. 2010;19(4):045018.

    Article  Google Scholar 

  89. Bekeschus S, Wende K, Hefny MM, Rodder K, Jablonowski H, Schmidt A, et al. Oxygen atoms are critical in rendering THP-1 leukaemia cells susceptible to cold physical plasma-induced apoptosis. Sci Rep. 2017;7(1):2791.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Park GY, Hong YJ, Lee HW, Sim JY, Lee JK. A global model for the identification of the dominant reactions for atomic oxygen in He/O-2 atmospheric-pressure plasmas. Plasma Process Polym. 2010;7(3–4):281–7.

    Article  CAS  Google Scholar 

  91. Georgescu N, Lungu CP, Lupu AR, Osiac M. Atomic oxygen maximization in high-voltage pulsed cold atmospheric plasma jets. IEEE Trans Plasma Sci. 2010;38(11):3156–62.

    Article  CAS  Google Scholar 

  92. Wende K, Williams P, Dalluge J, Gaens WV, Aboubakr H, Bischof J, et al. Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet. Biointerphases. 2015;10(2):029518.

    Article  PubMed  Google Scholar 

  93. Jablonowski H, Schmidt-Bleker A, Weltmann KD, von Woedtke T, Wende K. Non-touching plasma-liquid interaction - where is aqueous nitric oxide generated? Phys Chem Chem Phys. 2018;20(39):25387–98.

    Article  CAS  PubMed  Google Scholar 

  94. Breen C, Pal R, Elsegood MRJ, Teat SJ, Iza F, Wende K, et al. Time-resolved luminescence detection of peroxynitrite using a reactivity-based lanthanide probe. Chem Sci. 2020;11(12):3164–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Girard F, Badets V, Blanc S, Gazeli K, Marlin L, Authier L, et al. Formation of reactive nitrogen species including peroxynitrite in physiological buffer exposed to cold atmospheric plasma. RSC Adv. 2016;6(82):78457–67.

    Article  CAS  Google Scholar 

  96. Lukes P, Dolezalova E, Sisrova I, Clupek M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2and HNO2. Plasma Sources Sci Technol. 2014;23(1):015019.

    Article  CAS  Google Scholar 

  97. Jirásek V, Lukeš P. Formation of reactive chlorine species in saline solution treated by non-equilibrium atmospheric pressure He/O2 plasma jet. Plasma Sources Sci Technol. 2019;28(3):035015.

    Article  Google Scholar 

  98. d’Agostino R, Favia P, Oehr C, Wertheimer MR. Low-temperature plasma processing of materials: past, present, and future. Plasma Process Polym. 2005;2(1):7–15.

    Article  Google Scholar 

  99. Foest R, Kindel E, Ohl A, Stieber M, Weltmann KD. Non-thermal atmospheric pressure discharges for surface modification. Plasma Phys Control Fusion. 2005;47(12B):B525–B36.

    Article  CAS  Google Scholar 

  100. Cvelbar U, Walsh JL, Černák M, de Vries HW, Reuter S, Belmonte T, et al. White paper on the future of plasma science and technology in plastics and textiles. Plasma Process Polym. 2019;16(1):1700228.

    Article  Google Scholar 

  101. Weltmann KD, Kolb JF, Holub M, Uhrlandt D, Šimek M, Ostrikov K, et al. The future for plasma science and technology. Plasma Process Polym. 2018;16(1):1800118.

    Article  Google Scholar 

  102. Brandenburg R, Bogaerts A, Bongers W, Fridman A, Fridman G, Locke BR, et al. White paper on the future of plasma science in environment, for gas conversion and agriculture. Plasma Process Polym. 2018;16(1):1–18.

    Google Scholar 

  103. Schulze C, Nestler M, Zeuner M. Ion-beam figuring of x-ray mirrors. SPIE; 2019.

    Book  Google Scholar 

  104. Makhneva E, Barillas L, Farka Z, Pastucha M, Skládal P, Weltmann K-D, et al. Functional plasma polymerized surfaces for biosensing. ACS Appl Mater Inter. 2020;12(14):17100–12.

    Article  CAS  Google Scholar 

  105. Duske K, Koban I, Kindel E, Schroder K, Nebe B, Holtfreter B, et al. Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J Clin Periodontol. 2012;39(4):400–7.

    Article  CAS  PubMed  Google Scholar 

  106. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23(7):844–54.

    Article  PubMed  Google Scholar 

  107. Naujokat H, Harder S, Schulz LY, Wiltfang J, Florke C, Acil Y. Surface conditioning with cold argon plasma and its effect on the osseointegration of dental implants in miniature pigs. J Craniomaxillofac Surg. 2019;47(3):484–90.

    Article  PubMed  Google Scholar 

  108. Liang H, Shi B, Fairchild A, Cale T. Applications of plasma coatings in artificial joints: an overview. Vacuum. 2004;73(3–4):317–26.

    Article  CAS  Google Scholar 

  109. Naresh Kumar N, Yap SL, Bt Samsudin FND, Khan MZ, Pattela Srinivasa RS. Effect of argon plasma treatment on tribological properties of UHMWPE/MWCNT nanocomposites. Polymers. 2016;8(8):295.

    Article  PubMed Central  Google Scholar 

  110. Chen Y-H, Hsu C-C, He J-L. Antibacterial silver coating on poly(ethylene terephthalate) fabric by using high power impulse magnetron sputtering. Surf Coat Technol. 2013;232:868–75.

    Article  CAS  Google Scholar 

  111. Kratochvíl J, Kuzminova A, Kylián O. State-of-the-art, and perspectives of, silver/plasma polymer antibacterial nanocomposites. Antibiotics. 2018;7(3):78.

    Article  PubMed Central  Google Scholar 

  112. Schade E. Physics of high-current interruption of vacuum circuit breakers. IEEE Trans Plasma Sci. 2005;33(5):1564–75.

    Article  CAS  Google Scholar 

  113. Tahata K, Oukaili SE, Kamei K, Yoshida D, Kono Y, Yamamoto R, et al. HVDC circuit breakers for HVDC grid applications. IET Conference Proceedings [Internet]. 2015:[044(9.)-(9.) pp.]. Available from: https://digital-library.theiet.org/content/conferences/10.1049/cp.2015.0018.

  114. Timmermann E, Prehn F, Schmidt M, Hoft H, Brandenburg R, Kettlitz M. Indoor air purification by dielectric barrier discharge combined with ionic wind: physical and microbiological investigations. J Phys D Appl Phys. 2018;51(16):164003.

    Article  Google Scholar 

  115. Kim HH. Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Process Polym. 2004;1(2):91–110.

    Article  Google Scholar 

  116. Bogaerts A, Kozak T, van Laer K, Snoeckx R. Plasma-based conversion of CO2: current status and future challenges. Faraday Discuss. 2015;183:217–32.

    Article  CAS  PubMed  Google Scholar 

  117. Graves DB, Bakken LB, Jensen MB, Ingels R. Plasma activated organic fertilizer. Plasma Chem Plasma Process. 2018;39(1):1–19.

    Article  Google Scholar 

  118. Bourke P, Ziuzina D, Boehm D, Cullen PJ, Keener K. The potential of cold plasma for safe and sustainable food production. Trends Biotechnol. 2018;36(6):615–26.

    Article  CAS  PubMed  Google Scholar 

  119. Schnabel U, Niquet R, Schlüter O, Gniffke H, Ehlbeck J. Decontamination and sensory properties of microbiologically contaminated fresh fruits and vegetables by microwave plasma processed air (PPA). J Food Process Preserv. 2015;39(6):653–62.

    Article  CAS  Google Scholar 

Further Reading

  • Adamovich I, et al. The 2017 plasma roadmap: low temperature plasma science and technology. J Phys D Appl Phys. 2017;50(32):323001.

    Article  Google Scholar 

  • Becker KH, et al. Non-equilibrium air plasmas at atmospheric pressure. Boca Raton: CRC press; 2004.

    Book  Google Scholar 

  • Brandenburg R. Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol. 2017;26(5):053001.

    Article  Google Scholar 

  • Fridman A. Plasma chemistry. Cambridge, Cambridge university press; 2008.

    Book  Google Scholar 

  • Graves DB. Low temperature plasma biomedicine: a tutorial review. Phys Plasmas. 2014;21(8):080901.

    Article  Google Scholar 

  • Graves DB. Lessons from tesla for plasma medicine. IEEE Trans Radiat Plasma Med Sci. 2018;2(6):594–607.

    Article  Google Scholar 

  • Laroussi M, et al. Perspective: the physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J Appl Phys. 2017;122(2):020901.

    Article  Google Scholar 

  • Lu X, et al. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci Technol. 2012;21(3):034005.

    Article  Google Scholar 

  • Meichsner J, et al. Nonthermal plasma chemistry and physics. Boca Raton: CRC Press; 2012.

    Book  Google Scholar 

  • Metelmann H-R, et al. Plasmamedizin. Berlin/Heidelberg: Springer; 2016. (in German)

    Book  Google Scholar 

  • Metelmann H-R, et al. Comprehensive clinical plasma medicine: cold physical plasma for medical application. Cham: Springer; 2018.

    Book  Google Scholar 

  • Privat-Maldonado A, et al. ROS from physical plasmas: redox chemistry for biomedical therapy. Oxidative Med Cell Longev. 2019;2019:9062098.

    Article  Google Scholar 

  • Reuter S, et al. The kINPen-a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J Phys D Appl Phys. 2018;51(23):233001.

    Article  Google Scholar 

  • Winter J, et al. Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol. 2015;24(6):064001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Wende .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wende, K., Brandenburg, R. (2022). Cold Physical Plasma: A Short Introduction. In: Metelmann, HR., von Woedtke, T., Weltmann, KD., Emmert, S. (eds) Textbook of Good Clinical Practice in Cold Plasma Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-87857-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87857-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87856-6

  • Online ISBN: 978-3-030-87857-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics