Skip to main content

Toxoplasmosis in Northern Regions

  • Chapter
  • First Online:
Arctic One Health

Abstract

The apicomplexan parasite, Toxoplasma gondii, has a worldwide distribution, and it can infect virtually all warm-blooded animals, including wildlife, domestic animals, and humans. Toxoplasma gondii can cause disease, toxoplasmosis, in both humans and animals. It is a parasite of importance for public health, veterinary medicine (food safety, animal production, and welfare), and wildlife conservation, with transmission influenced by environment and host ecology, in short, a poster parasite for One Health. Here, we review what is known about transmission, genetic diversity, prevalence, and health impact of T. gondii in its human and animal hosts and discuss its significance in the Arctic. Since the definitive felid hosts of the parasite are rare above the treeline, transmission cycle of T. gondii remains enigmatic in this specific environment, while its impact on wildlife health and northern food security needs attention. With global climate change and anthropogenic factors affecting the Arctic at higher rates than anywhere else on the planet, research taking a One Health approach is critically needed on the determinants of prevalence and impact of T. gondii, as well as the sources, methods of transmission, and environmental tolerance of T. gondii in the circumpolar North.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acia (2004) Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Aramini JJ, Stephen C, Dubey JP et al (1999) Potential contamination of drinking water with Toxoplasma gondii oocysts. Epidemiol Infect 122(2):305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachand N, Ravel A, Leighton P et al (2018) Foxes (Vulpes vulpes) as sentinels for parasitic zoonoses, Toxoplasma gondii and Trichinella nativa, in the northeastern Canadian Arctic. Int J Parasitol Parasites Wildl 7(3):391–397

    Article  Google Scholar 

  • Bachand N, Ravel A, Leighton P et al (2019) Serological and molecular detection of Toxoplasma gondii in terrestrial and marine wildlife harvested for food in Nunavik, Canada. Parasit Vectors 12(1):155

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker T, Flaig J, Shillingford M et al (2018) Ice road vets: perspectives on the role of veterinarians in northern community health. Can Vet J 59(6):668–672

    PubMed  PubMed Central  Google Scholar 

  • Barry MA, Weatherhead JE, Hotez PJ et al (2013) Childhood parasitic infections endemic to the United States. Pediatr Clin N Am 60(2):471–485

    Article  Google Scholar 

  • Benenson MW, Takafuji ET, Lemon SM et al (1982) Oocyst-transmitted toxoplasmosis associated with ingestion of contaminated water. N Engl J Med 307(11):666–669

    Article  CAS  PubMed  Google Scholar 

  • Blanchet MA, Godfroid J, Breines EM et al (2014) West Greenland harbour porpoises assayed for antibodies against Toxoplasma gondii: false positives with the direct agglutination method. Dis Aquat Org 108(3):181–186

    Article  Google Scholar 

  • Boothroyd JC, Grigg ME (2002) Population biology of Toxoplasma gondii and its relevance to human infection: do different strains cause different disease? Curr Opin Microbiol 5(4):438–442

    Article  PubMed  Google Scholar 

  • Bouchard E, Sharma R, Bachand N et al (2017) Pathology, clinical signs, and tissue distribution of Toxoplasma gondii in experimentally infected reindeer (Rangifer tarandus). Int J Parasitol Parasites Wildl 6(3):234–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouchard E, Elmore SA, Alisauskas RT et al (2019) Transmission dynamics of Toxoplasma gondii in Arctic foxes (Vulpes lagopus): a long-term mark-recapture serologic study at Karrak Lake, Nunavut, Canada. J Wildl Dis 55(3):619–626

    Article  PubMed  Google Scholar 

  • Bowie WR, King AS, Werker DH et al (1997) Outbreak of toxoplasmosis associated with municipal drinking water. The BC Toxoplasma investigation team. Lancet 350(9072):173–177

    Article  CAS  PubMed  Google Scholar 

  • Calero-Bernal R, Gomez-Gordo L, Saugar JM et al (2013) Congenital toxoplasmosis in wild boar (Sus scrofa) and identification of the Toxoplasma gondii types involved. J Wildl Dis 49(4):1019–1023

    Article  PubMed  Google Scholar 

  • Canada E (2012) Recovery strategy for the Woodland Caribou, boreal population (Rangifer tarandus caribou) in Canada. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa, p 138

    Google Scholar 

  • Charron D, Thomas M, Waltner-Toews D et al (2004) Vulnerability of waterborne diseases to climate change in Canada: a review. J Toxicol Environ Health A 67(20–22):1667–1677

    Article  CAS  PubMed  Google Scholar 

  • Cleary MD, Singh U, Blader IJ et al (2002) Toxoplasma gondii asexual development: identification of developmentally regulated genes and distinct patterns of gene expression. Eukaryot Cell 1(3):329–340

    Google Scholar 

  • Conrad PA, Miller MA, Kreuder C et al (2005) Transmission of Toxoplasma: clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment. Int J Parasitol 35(11–12):1155–1168

    Article  CAS  PubMed  Google Scholar 

  • Deksne G, Davidson RK, Buchmann K et al (2020) Parasites in the changing world – ten timely examples from the Nordic-Baltic region. Parasite Epidemiol Control 10:e00150

    Article  PubMed  PubMed Central  Google Scholar 

  • Desmonts G, Couvreur J (1974) Congenital toxoplasmosis – prospective study of 378 pregnancies. N Engl J Med 290(20):1110–1116

    Article  CAS  PubMed  Google Scholar 

  • DHSS (2005) Preventing infection with Toxoplasma gondii. Section of Epidemiology. State of Alaska Epidemiology, Bulletin 7

    Google Scholar 

  • Djurkovik-Djakovik O, Milenkovic V (2000) Effect of refrigeration and freezing on survival of Toxoplasma gondii tissue cysts. Acta Vet (Beograd) 50(5/6):375–380

    Google Scholar 

  • Dubey JP (1995) Duration of immunity to shedding of Toxoplasma gondii oocysts by cats. J Parasitol 81(3):410–415

    Article  CAS  PubMed  Google Scholar 

  • Dubey JP (2009a) Toxoplasmosis in sheep—the last 20 years. Vet Parasitol 163(1–2):1–14

    Article  CAS  PubMed  Google Scholar 

  • Dubey JP (2009b) History of the discovery of the life cycle of Toxoplasma gondii. Int J Parasitol 39(8):877–882

    Article  CAS  PubMed  Google Scholar 

  • Dubey JP (2010) Toxoplasmosis of animals and humans. CRC Press, Boca Raton

    Google Scholar 

  • Dubey JP, Lindsay DS (1996) A review of Neospora caninum and neosporosis. Vet Parasitol 67(1–2):1–59

    Article  CAS  PubMed  Google Scholar 

  • Dubey JP, Miller NL, Frenkel JK et al (1970) The Toxoplasma gondii oocyst from cat feces. J Exp Med 132(4):636–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey JP, Lindsay DS, Speer CA (1998) Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev 11(2):267–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey JP, Lewis B, Beam K et al (2002) Transplacental toxoplasmosis in a reindeer (Rangifer tarandus) fetus. Vet Parasitol 110(1–2):131–135

    Google Scholar 

  • Dubey JP, Zarnke R, Thomas NJ et al (2003) Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals. Vet Parasitol 116(4):275–296

    Google Scholar 

  • Dubey JP, Graham DH, De Young RW et al (2004) Molecular and biologic characteristics of Toxoplasma gondii isolates from wildlife in the United States. J Parasitol 90(1):67–71

    Article  CAS  PubMed  Google Scholar 

  • Dubey JP, Quirk T, Pittt JA et al (2008) Isolation and genetic characterization of Toxoplasma gondii from raccoons (Procyon lotor), cats (Felis domesticus), striped skunk (Mephitis mephitis), black bear (Ursus americanus), and cougar (Puma concolor) from Canada. J Parasitol 94(1):42–45

    Article  CAS  PubMed  Google Scholar 

  • Dubey JP, Rajendran C, Ferreira LR et al (2010) A new atypical highly mouse virulent Toxoplasma gondii genotype isolated from a wild black bear in Alaska. J Parasitol 96(4):713–716

    Article  CAS  PubMed  Google Scholar 

  • Dubey JP, Velmurugan GV, Rajendran C et al (2011) Genetic characterisation of Toxoplasma gondii in wildlife from North America revealed widespread and high prevalence of the fourth clonal type. Int J Parasitol 41(11):1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Dubremetz JF, Lebrun M (2012) Virulence factors of Toxoplasma gondii. Microbes Infect 14(15):1403–1410

    Article  CAS  PubMed  Google Scholar 

  • Elmore SA, Huyvaert KP, Bailey LL et al (2014) Toxoplasma gondii exposure in arctic-nesting geese: a multi-state occupancy framework and comparison of serological assays. Int J Parasitol Parasites Wildl 3(2):147–153

    Google Scholar 

  • Elmore SA, Samelius G, Fernando C et al (2015) Evidence for Toxoplasma gondii in migratory vs. nonmigratory herbivores in a terrestrial arctic ecosystem. Can J Zool 93(8):671–675

    Article  Google Scholar 

  • Elmore SA, Samelius G, Al-Adhami B et al (2016) Estimating Toxoplasma gondii exposure in Arctic foxes (Vulpes lagopus) while navigating the imperfect world of wildlife serology. J Wildl Dis 52(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • FAO (2013) Indigenous Peoples’ food systems & well-being: interventions & policies for healthy communities. Food and Agriculture Organization of the United Nations, p 398

    Google Scholar 

  • FAO, WHO (2014) Multicriteria-based ranking for risk management of foodborne parasites. Report of a joint FAO/WHO expert meeting, p 287

    Google Scholar 

  • Festa-Bianchet M, Ray JC, Boutin S et al (2011) Conservation of caribou (Rangifer tarandus) in Canada: an uncertain future. Can J Zool 89(5):419–434

    Article  Google Scholar 

  • Frenkel JK, Ruiz A, Chinchilla M (1975) Soil survival of Toxoplasma oocysts in Kansas and Costa Rica. Am J Trop Med Hyg 24(3):439–443

    Article  CAS  PubMed  Google Scholar 

  • Gajadhar AA, Allen JR (2004) Factors contributing to the public health and economic importance of waterborne zoonotic parasites. Vet Parasitol 126(1–2):3–14

    Article  PubMed  Google Scholar 

  • Galal L, Hamidovic A, Darde ML et al (2019) Diversity of Toxoplasma gondii strains at the global level and its determinants. Food Waterborne Parasitol 15:e00052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaulin C, Ramsay D, Thivierge K et al (2020) Acute toxoplasmosis among Canadian deer hunters associated with consumption of undercooked deer meat hunted in the United States. Emerg Infect Dis 26(2):199–205

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerhold RW, Saraf P, Chapman A et al (2017) Toxoplasma gondii seroprevalence and genotype diversity in select wildlife species from the southeastern United States. Parasit Vectors 10(1):508

    Google Scholar 

  • Goyette S, Cao ZR, Libman M et al (2014) Seroprevalence of parasitic zoonoses and their relationship with social factors among the Canadian Inuit in Arctic regions. Diagn Microbiol Infect Dis 78(4):404–410

    Article  PubMed  Google Scholar 

  • Grigg ME, Sundar N (2009) Sexual recombination punctuated by outbreaks and clonal expansions predicts Toxoplasma gondii population genetics. Int J Parasitol 39(8):925–933

    Article  PubMed  PubMed Central  Google Scholar 

  • Haman KH, Raverty S, Wendte JM et al (2013) Infected tissues from hunter harvested beluga (Delphinapterus leucas) in the Western Canadian Arctic. In: 44th Annual IAAAM conference, the marine mammal Center Sausalito, California, 2013

    Google Scholar 

  • Herder V, Van De Velde N, Hojer Kristensen J et al (2015) Fatal disseminated Toxoplasma gondii infection in a captive harbour porpoise (Phocoena phocoena). J Comp Pathol 153(4):357–362

    Article  CAS  PubMed  Google Scholar 

  • Hide G, Morley EK, Hughes JM et al (2009) Evidence for high levels of vertical transmission in Toxoplasma gondii. Parasitology 136(14):1877–1885

    Article  CAS  PubMed  Google Scholar 

  • Hill D, Dubey JP (2002) Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect 8(10):634–640

    Google Scholar 

  • Hotez PJ (2010) Neglected infections of poverty among the indigenous peoples of the Arctic. PLoS Negl Trop Dis 4(1)

    Google Scholar 

  • Hueffer K, Parkinson AJ, Gerlach R et al (2013) Zoonotic infections in Alaska: disease prevalence, potential impact of climate change and recommended actions for earlier disease detection, research, prevention and control. Int J Circumpolar Health 72(1)

    Google Scholar 

  • Iqbal A, Measures L, Lair S et al (2018) Toxoplasma gondii infection in stranded St. Lawrence Estuary beluga Delphinapterus leucas in Quebec. Can Dis Aquat Organ 130(3):165–175

    Google Scholar 

  • Jenkins EJ, Castrodale LJ, De Rosemond SJC et al (2013) Tradition and transition: parasitic zoonoses of people and animals in Alaska, Northern Canada, and Greenland. In: Rollinson D (ed) Advances in parasitology. Academic, pp 33–204

    Google Scholar 

  • Jensen SK, Aars J, Lydersen C et al (2010) The prevalence of Toxoplasma gondii in polar bears and their marine mammal prey: evidence for a marine transmission pathway? Polar Biol 33(5):599–606

    Article  Google Scholar 

  • Jokelainen P, Nylund M (2012) Acute fatal toxoplasmosis in three Eurasian red squirrels (Sciurus vulgaris) caused by genotype II of Toxoplasma gondii. J Wildl Dis 48(2):454–457

    Article  PubMed  Google Scholar 

  • Jokelainen P, Nareaho A, Knaapi S et al (2010) Toxoplasma gondii in wild cervids and sheep in Finland: north-south gradient in seroprevalence. Vet Parasitol 171(3–4):331–336

    Google Scholar 

  • Jokelainen P, Isomursu M, Nareaho A et al (2011) Natural Toxoplasma gondii infections in European brown hares and mountain hares in Finland: proportional mortality rate, antibody prevalence, and genetic characterization. J Wildl Dis 47(1):154–163

    Article  PubMed  Google Scholar 

  • Jokelainen P, Simola O, Rantanen E et al (2012) Feline toxoplasmosis in Finland: cross-sectional epidemiological study and case series study. J Vet Diagn Investig 24(6):1115–1124

    Article  Google Scholar 

  • Jokelainen P, Deksne G, Holmala K et al (2013) Free-ranging Eurasian lynx (Lynx lynx) as host of Toxoplasma gondii in Finland. J Wildl Dis 49(3):527–534

    Article  PubMed  Google Scholar 

  • Jokelainen P, Murat JB, Nielsen HV (2018) Direct genetic characterization of Toxoplasma gondii from clinical samples from Denmark: not only genotypes II and III. Eur J Clin Microbiol Infect Dis 37(3):579–586

    Article  CAS  PubMed  Google Scholar 

  • Jones JL, Kruszon-Moran D, Elder S et al (2018) Toxoplasma gondii infection in the United States, 2011-2014. Am J Trop Med Hyg 98(2):551–557

    Google Scholar 

  • Ketz-Riley CJ, Ritchey JW, Hoover JP et al (2003) Immunodeficiency associated with multiple concurrent infections in captive Pallas’ cats (Otocolobus manul). J Zoo Wildl Med 34(3):239–245

    Article  PubMed  Google Scholar 

  • Kocan AA, Barron SJ, Fox JC et al (1986) Antibodies to Toxoplasma-gondii in Moose (Alces-alces L) from Alaska. J Wildl Dis 22(3):432–432

    Article  CAS  PubMed  Google Scholar 

  • Kolychev VV (1969) Viability of Toxoplasma in reindeer meat. Veterinariia 46(8):99–100

    CAS  PubMed  Google Scholar 

  • Koutsoumanis K, Allende A, Alvarez-OrdĂ³Ă±ez A et al (2018) Public health risks associated with food-borne parasites. EFSA J 16(12):113

    Google Scholar 

  • Kutz SJ, Elkin B, Gunn A et al (2000) Prevalence of Toxoplasma gondii antibodies in muskox (Ovibos moschatus) sera from northern Canada. J Parasitol 86(4):879–882

    Article  CAS  PubMed  Google Scholar 

  • Kutz SJ, Elkin BT, Panayi D et al (2001) Prevalence of Toxoplasma gondii antibodies in barren-ground caribou (Rangifer tarandus groenlandicus) from the Canadian Arctic. J Parasitol 87(2):439–442

    Article  CAS  PubMed  Google Scholar 

  • Lavoie E, LĂ©vesque B, Proulx J-F et al (2008) Evaluation of the efficacy of the Toxoplasma gondii screening program among pregnant women in Nunavik, 1994-2003. Can J Public Health 99(5):397–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Lelu M, Villena I, Darde ML et al (2012) Quantitative estimation of the viability of Toxoplasma gondii oocysts in soil. Appl Environ Microbiol 78(15):5127–5132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Pomares C, Gonfrier G et al (2016) Multiplexed anti-Toxoplasma IgG, IgM, and IgA assay on plasmonic gold chips: towards making mass screening possible with dye test precision. J Clin Microbiol 54(7):1726–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay DS, Dubey JP (2007) Toxoplasmosis in wild and domestic animals. In: Weiss LM, Kim K (eds) Toxoplasma gondii: the model apicomplexan. Perspectives and methods. Academic, London, pp 133–152

    Chapter  Google Scholar 

  • Lindsay DS, Dubey JP (2009) Long-term survival of Toxoplasma gondii sporulated oocysts in seawater. J Parasitol 95(4):1019–1020

    Article  PubMed  Google Scholar 

  • Ljungström I, Gille E, Nokes J et al (1995) Seroepidemiology of Toxoplasma gondii among pregnant women in different parts of Sweden. Eur J Epidemiol 11(2):149–156

    Article  PubMed  Google Scholar 

  • Malmsten J, Jakubek EB, Bjorkman C (2011) Prevalence of antibodies against Toxoplasma gondii and Neospora caninum in moose (Alces alces) and roe deer (Capreolus capreolus) in Sweden. Vet Parasitol 177(3-4):275–280

    Article  PubMed  Google Scholar 

  • Martin D, Belanger D, Gosselin P et al (2007) Drinking water and potential threats to human health in Nunavik: adaptation strategies under climate change conditions. Arctic 60:195–202

    Google Scholar 

  • Martorelli Di Genova B, Wilson SK, Dubey JP et al (2019) Intestinal delta-6-desaturase activity determines host range for Toxoplasma sexual reproduction. PLoS Biol 17(8):e3000364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Massie GN, Ware MW, Villegas EN et al (2010) Uptake and transmission of Toxoplasma gondii oocysts by migratory, filter-feeding fish. Vet Parasitol 169(3–4):296–303

    Article  CAS  PubMed  Google Scholar 

  • Maubon D, Ajzenberg D, Brenier-Pinchart MP et al (2008) What are the respective host and parasite contributions to toxoplasmosis? Trends Parasitol 24(7):299–303

    Article  CAS  PubMed  Google Scholar 

  • Mcdonald JC, Gyorkos TW, Alberton B et al (1990) An outbreak of toxoplasmosis in pregnant women in northern Quebec. J Infect Dis 161(4):769–774

    Article  CAS  PubMed  Google Scholar 

  • Messier V, LĂ©vesque B, Proulx JF et al (2007) Zoonotic diseases, drinking water and gastroenteritis in Nunavik: a brief portrait. Nunavik Inuit Health Survey 2004, Institut national de santĂ© publique du QuĂ©bec

    Google Scholar 

  • Messier V, Levesque B, Proulx JF et al (2009) Seroprevalence of Toxoplasma gondii among Nunavik Inuit (Canada). Zoonoses Public Health 56(4):188–197

    Article  CAS  PubMed  Google Scholar 

  • Miernyk KM, Bruden D, Parkinson AJ et al (2019) Human Seroprevalence to 11 zoonotic pathogens in the U.S. Arctic, Alaska. Vector Borne Zoonotic Dis 19(8):563–575

    Article  PubMed  Google Scholar 

  • Molan A, Nosaka K, Hunter M et al (2019) Global status of Toxoplasma gondii infection: systematic review and prevalence snapshots. Trop Biomed 36(4):898–925

    CAS  PubMed  Google Scholar 

  • Montoya JG, Liesenfeld O (2004) Toxoplasmosis. Lancet 363(9425):1965–1976

    Article  CAS  PubMed  Google Scholar 

  • Must K, Hytönen MK, Orro T et al (2017) Toxoplasma gondii seroprevalence varies by cat breed. PLoS One 12(9):e0184659

    Google Scholar 

  • Oksanen A, Gustafsson K, Lunden A et al (1996) Experimental Toxoplasma gondii infection leading to fatal enteritis in reindeer (Rangifer tarandus). J Parasitol 82(5):843–845

    Article  CAS  PubMed  Google Scholar 

  • Oksanen A, Ă…sbakk K, Nieminen M et al (1997) Antibodies against Toxoplasma gondii in Fennoscandian reindeer – association with the degree of domestication. Parasitol Int 46:255–261

    Google Scholar 

  • Oksanen A, Tryland M, Johnsen K et al (1998) Serosurvey of Toxoplasma gondii in North Atlantic marine mammals by the use of agglutination test employing whole tachyzoites and dithiothreitol. Comp Immunol Microbiol Infect Dis 21(2):107–114

    Article  CAS  PubMed  Google Scholar 

  • Oksanen A, Asbakk K, Prestrud KW et al (2009) Prevalence of antibodies against Toxoplasma gondii in polar bears (Ursus maritimus) from Svalbard and East Greenland. J Parasitol 95(1):89–94

    Article  CAS  PubMed  Google Scholar 

  • Parameswaran N, O’handley RM, Grigg ME et al (2009) Vertical transmission of Toxoplasma gondii in Australian marsupials. Parasitology 136(9):939–944

    Article  CAS  PubMed  Google Scholar 

  • Patz JA, Graczyk TK, Geller N et al (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30(12–13):1395–1405

    Article  CAS  PubMed  Google Scholar 

  • Peterson DR, Cooney MK, Beasley RP (1974) Prevalence of antibody to Toxoplasma among Alaskan natives – relation to exposure to Felidae. J Infect Dis 130(6):557–563

    Article  CAS  PubMed  Google Scholar 

  • Pilfold NW, Richardson ES, Ellis J et al (2021) Long-term increases in pathogen seroprevalence in polar bears (Ursus maritimus) influenced by climate change. Glob Change Biol. https://doi.org/10.1111/gcb.15537

  • Pozio E (2016) Adaptation of Trichinella spp. for survival in cold climates. Food Waterborne Parasitol 4:4–12

    Google Scholar 

  • Prestrud KW, Asbakk K, Fuglei E et al (2007) Serosurvey for Toxoplasma gondii in Arctic foxes and possible sources of infection in the high Arctic of Svalbard. Vet Parasitol 150(1–2):6–12

    Article  PubMed  Google Scholar 

  • Prestrud KW, Asbakk K, Mork T et al (2008a) Direct high-resolution genotyping of Toxoplasma gondii in arctic foxes (Vulpes lagopus) in the remote arctic Svalbard archipelago reveals widespread clonal type II lineage. Vet Parasitol 158(1–2):121–128

    Article  CAS  PubMed  Google Scholar 

  • Prestrud KW, Dubey JP, Asbakk K et al (2008b) First isolate of Toxoplasma gondii from arctic fox (Vulpes lagopus) from Svalbard. Vet Parasitol 151(2–4):110–114

    Article  PubMed  Google Scholar 

  • Pufall EL, Jones AQ, Mcewen SA et al (2011) Perception of the importance of traditional country foods to the physical, mental, and spiritual health of Labrador Inuit. Arctic 64(2):242–250

    Article  Google Scholar 

  • Rah H, Chomel BB, Follmann EH et al (2005) Serosurvey of selected zoonotic agents in polar bears (Ursus maritimus). Vet Rec 156(1):7–13

    Article  CAS  PubMed  Google Scholar 

  • Reiling SJ, Dixon BR (2019) Toxoplasma gondii: how an Amazonian parasite became an Inuit health issue. Can Commun Dis Rep 45(7–8):183–190

    Google Scholar 

  • Rengifo-Herrera C, Ortega-Mora LM, Alvarez-Garcia G et al (2012) Detection of Toxoplasma gondii antibodies in Antarctic pinnipeds. Vet Parasitol 190(1–2):259–262

    Article  PubMed  Google Scholar 

  • Robert-Gangneux F, Darde ML (2012) Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 25(2):264–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryser-Degiorgis MP, Jakubek EB, Af Segerstad CH et al (2006) Serological survey of Toxoplasma gondii infection in free-ranging Eurasian lynx (Lynx lynx) from Sweden. J Wildl Dis 42(1):182–187

    Article  PubMed  Google Scholar 

  • Saeij JP, Boyle JP, Boothroyd JC (2005) Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host. Trends Parasitol 21(10):476–481

    Article  PubMed  Google Scholar 

  • Sampasa-Kanyinga H, Levesque B, Anassour-Laouan-Sidi E et al (2012) Zoonotic infections in native communities of James Bay, Canada. Vector Borne Zoonotic Dis 12(6):473–481

    Article  PubMed  Google Scholar 

  • Sandström CA, Buma AG, Hoye BJ et al (2013) Latitudinal variability in the seroprevalence of antibodies against Toxoplasma gondii in non-migrant and Arctic migratory geese. Vet Parasitol 194(1):9–15

    Article  PubMed  Google Scholar 

  • Scallan E, Hoekstra RM, Angulo FJ et al (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17(1):7–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Sedlak K, Literak I, Faldyna M et al (2000) Fatal toxoplasmosis in brown hares (Lepus europaeus): possible reasons of their high susceptibility to the infection. Vet Parasitol 93(1):13–28

    Article  CAS  PubMed  Google Scholar 

  • Shapiro K, Bahia-Oliveira L, Dixon B et al (2019a) Environmental transmission of Toxoplasma gondii: oocysts in water, soil and food. Food Waterborne Parasitol 15:e00049

    Article  PubMed  PubMed Central  Google Scholar 

  • Shapiro K, Vanwormer E, Packham A et al (2019b) Type X strains of Toxoplasma gondii are virulent for southern sea otters (Enhydra lutris nereis) and present in felids from nearby watersheds. Proc Biol Sci 286(1909):20191334

    Google Scholar 

  • Sharma R, Parker S, Al-Adhami B et al (2019a) Comparison of tissues (heart vs. brain) and serological tests (MAT, ELISA and IFAT) for detection of Toxoplasma gondii in naturally infected wolverines (Gulo gulo) from the Yukon, Canada. Food Waterborne Parasitol 15:e00046

    Google Scholar 

  • Sharma R, Parker S, Elkin B et al (2019b) Risk factors and prevalence of antibodies for Toxoplasma gondii in diaphragmatic fluid in wolverines (Gulo gulo) from the Northwest Territories, Canada. Food Waterborne Parasitol 15:e00056

    Article  PubMed  PubMed Central  Google Scholar 

  • Shwab EK, Zhu XQ, Majumdar D et al (2014) Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology 141(4):453–461

    Article  PubMed  Google Scholar 

  • Shwab EK, Saraf P, Zhu XQ et al (2018) Human impact on the diversity and virulence of the ubiquitous zoonotic parasite Toxoplasma gondii. Proc Natl Acad Sci USA 115(29):E6956–E6963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siepierski SJ, Tanner CE, Embil JA (1990) Prevalence of antibody to Toxoplasma gondii in the moose (Alces alces americana Clinton) of Nova Scotia, Canada. J Parasitol 76(1):136–138

    Article  CAS  PubMed  Google Scholar 

  • Simon A, Bigras Poulin M, Rousseau AN et al (2013a) Spatiotemporal dynamics of Toxoplasma gondii infection in Canadian lynx (Lynx canadensis) in western Quebec, Canada. J Wildl Dis 49(1):39–48

    Article  PubMed  Google Scholar 

  • Simon A, Rousseau AN, Savary S et al (2013b) Hydrological modelling of Toxoplasma gondii oocysts transport to investigate contaminated snowmelt runoff as a potential source of infection for marine mammals in the Canadian Arctic. J Environ Manag 127:150–161

    Article  Google Scholar 

  • Sorensen KK, Mork T, Sigurdardottir OG et al (2005) Acute toxoplasmosis in three wild arctic foxes (Alopex lagopus) from Svalbard; one with co-infections of Salmonella enteritidis PT1 and Yersinia pseudotuberculosis serotype 2b. Res Vet Sci 78(2):161–167

    Article  CAS  PubMed  Google Scholar 

  • Su C, Zhang X, Dubey JP (2006) Genotyping of Toxoplasma gondii by multilocus PCR-RFLP markers: a high resolution and simple method for identification of parasites. Int J Parasitol 36(7):841–848

    Article  CAS  PubMed  Google Scholar 

  • Suvisaari J, Torniainen-Holm M, Lindgren M et al (2017) Toxoplasma gondii infection and common mental disorders in the Finnish general population. J Affect Disord 223:20–25

    Google Scholar 

  • Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30(12–13):1217–1258

    Google Scholar 

  • Vargas-Villavicencio JA, Besne-Merida A, Correa D (2016) Vertical transmission and fetal damage in animal models of congenital toxoplasmosis: a systematic review. Vet Parasitol 223:195–204

    Article  PubMed  Google Scholar 

  • Verma SK, Carstensen M, Calero-Bernal R et al (2016) Seroprevalence, isolation, first genetic characterization of Toxoplasma gondii, and possible congenital transmission in wild moose from Minnesota, USA. Parasitol Res 115(2):687–690

    Article  PubMed  Google Scholar 

  • Vikoren T, Tharaldsen J, Fredriksen B et al (2004) Prevalence of Toxoplasma gondii antibodies in wild red deer, roe deer, moose, and reindeer from Norway. Vet Parasitol 120(3):159–169

    Article  PubMed  Google Scholar 

  • Vors LS, Boyce MS (2009) Global declines of caribou and reindeer. Glob Chang Biol 15(11):2626–2633

    Article  Google Scholar 

  • Weiss LM, Dubey JP (2009) Toxoplasmosis: a history of clinical observations. Int J Parasitol 39(8):895–901

    Article  PubMed  PubMed Central  Google Scholar 

  • Wendte JM, Gibson AK, Grigg ME (2011) Population genetics of Toxoplasma gondii: new perspectives from parasite genotypes in wildlife. Vet Parasitol 182(1):96–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson CB, Remington JS, Stagno S et al (1980) Development of adverse sequelae in children born with subclinical congenital Toxoplasma infection. Pediatrics 66(5):767–774

    Article  CAS  PubMed  Google Scholar 

  • Wilson AG, Lapen DR, Mitchell GW et al (2020) Interaction of diet and habitat predicts Toxoplasma gondii infection rates in wild birds at a global scale. Glob Ecol Biogeogr 00:1–10

    Google Scholar 

  • Work TM, Verma SK, Su C et al (2016) Toxoplasma gondii antibody prevalence and two new genotypes of the parasite in endangered Hawaiian geese (Nene: Branta sandvicensis). J Wildl Dis 52(2):253–257

    Google Scholar 

  • Yolken RH, Torrey EF (2008) Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol Psychiatry 13(5):470–479

    Article  CAS  PubMed  Google Scholar 

  • Zarnke RL, Dubey JP, Kwok OC et al (1997) Serologic survey for Toxoplasma gondii in grizzly bears from Alaska. J Wildl Dis 33(2):267–270

    Article  CAS  PubMed  Google Scholar 

  • Zarnke RL, Dubey JP, Kwok OCH et al (2000) Serologic survey for Toxoplasma gondii in selected wildlife species from Alaska. J Wildl Dis 36(2):219–224

    Article  CAS  PubMed  Google Scholar 

  • Zarnke RL, Dubey JP, Ver Hoef JM et al (2001) Serologic survey for Toxoplasma gondii in lynx from interior Alaska. J Wildl Dis 37(1):36–38

    Article  CAS  PubMed  Google Scholar 

  • Zulpo DL, Sammi AS, Dos Santos JR et al (2018) Toxoplasma gondii: a study of oocyst re-shedding in domestic cats. Vet Parasitol 249:17–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Émilie Bouchard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouchard, É., Jokelainen, P., Sharma, R., Fenton, H., Jenkins, E.J. (2022). Toxoplasmosis in Northern Regions. In: Tryland, M. (eds) Arctic One Health. Springer, Cham. https://doi.org/10.1007/978-3-030-87853-5_13

Download citation

Publish with us

Policies and ethics