Skip to main content

Transcriptomics to Dissect the Immune System

  • Chapter
  • First Online:
Transcriptomics in Health and Disease

Abstract

The immune system functions to protect the host from diverse pathogenic microorganisms as well as cancers, where transcriptional regulations in various immune cells are stringently controlled to ensure the appropriate activities of the system. Therefore, the transcriptional landscapes in different types of immune cells are distinctive to achieve respective roles in the immune system. The transcriptome analysis in bulk or a population of cells provides essential information which promotes a better understanding of gene regulations and molecular mechanisms shaping respective cell types. Furthermore, given the substantial heterogeneity in immune cells, transcriptome analysis at a single cell resolution would be contributive for identifying disease-relevant cells and genes, which facilitate us to understand the underlying mechanisms of immune disorders. In this chapter, we discuss the relevance of transcriptional profiling of immune cells including single-cell transcriptomes which have great potential to dissect the function of the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas AR, Wolslegel K, Seshasayee D, Modrusan Z, Clark HF (2009) Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS One 4:e6098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abramson J, Giraud M, Benoist C, Mathis D (2010) Aire's partners in the molecular control of immunological tolerance. Cell 140:123–135

    Article  CAS  PubMed  Google Scholar 

  • Ackerman GA (1964) Histochemical differentiation during neutrophil development and maturation. Ann N Y Acad Sci 113:537–565

    Article  CAS  PubMed  Google Scholar 

  • Ahonen P, Myllarniemi S, Sipila I, Perheentupa J (1990) Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 322:1829–1836

    Article  CAS  PubMed  Google Scholar 

  • Aizat WM, Ismail I, Noor NM (2018) Recent development in omics studies. Adv Exp Med Biol 1102:1–9

    Article  CAS  PubMed  Google Scholar 

  • Akiyama T, Shimo Y, Yanai H, Qin J, Ohshima D, Maruyama Y, Asaumi Y, Kitazawa J, Takayanagi H, Penninger JM et al (2008) The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29:423–437

    Article  CAS  PubMed  Google Scholar 

  • Akiyoshi H, Hatakeyama S, Pitkanen J, Mouri Y, Doucas V, Kudoh J, Tsurugaya K, Uchida D, Matsushima A, Oshikawa K et al (2004) Subcellular expression of autoimmune regulator (AIRE) is organized in a spatiotemporal manner. J Biol Chem 279:33984–33991

    Article  CAS  PubMed  Google Scholar 

  • Amaya-Uribe L, Rojas M, Azizi G, Anaya J-M, Gershwin ME (2019) Primary immunodeficiency and autoimmunity: a comprehensive review. J Autoimmun 99:52–72

    Article  CAS  PubMed  Google Scholar 

  • Amit I, Regev A, Hacohen N (2011) Strategies to discover regulatory circuits of the mammalian immune system. Nat Rev Immunol 11:873–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Nature Precedings

    Google Scholar 

  • Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401

    Article  CAS  PubMed  Google Scholar 

  • Baik S, Jenkinson EJ, Lane PJ, Anderson G, Jenkinson WE (2013) Generation of both cortical and Aire(+) medullary thymic epithelial compartments from CD205(+) progenitors. Eur J Immunol 43:589–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird AE, Soper SA, Pullagurla SR, Adamski MG (2015) Recent and near-future advances in nucleic acid-based diagnosis of stroke. Expert Rev Mol Diagn 15:665–679

    Article  CAS  PubMed  Google Scholar 

  • Bansal K, Yoshida H, Benoist C, Mathis D (2017) The transcriptional regulator Aire binds to and activates super-enhancers. Nat Immunol 18:263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bautista JL, Cramer NT, Miller CN, Chavez J, Berrios DI, Byrnes LE, Germino J, Ntranos V, Sneddon JB, Burt TD et al (2021) Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla. Nat Commun 12:1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengtsson M, Ståhlberg A, Rorsman P, Kubista M (2005) Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res 15:1388–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besnard M, Padonou F, Provin N, Giraud M, Guillonneau C (2021) AIRE deficiency, from preclinical models to human APECED disease. Dis Model Mech 14:dmm046359

    Google Scholar 

  • Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441:992–996

    Article  CAS  PubMed  Google Scholar 

  • Bornstein C, Nevo S, Giladi A, Kadouri N, Pouzolles M, Gerbe F, David E, Machado A, Chuprin A, Toth B et al (2018) Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature 559:622–626

    Article  CAS  PubMed  Google Scholar 

  • Brady G, Barbara M, Iscove NN (1990) Representative in vitro cDNA amplification from individual hemopoietic cells and colonies. Methods Mol Cell Biol 2:17–25

    CAS  Google Scholar 

  • Break TJ, Oikonomou V, Dutzan N, Desai JV, Swidergall M, Freiwald T, Chauss D, Harrison OJ, Alejo J, Williams DW et al (2021) Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science 371:eaay5731

    Google Scholar 

  • Bullard JH, Purdom E, Hansen KD, Dudoit S (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burton KJ, Pimentel G, Zangger N, Vionnet N, Drai J, McTernan PG, Pralong FP, Delorenzi M, Vergères G (2018) Modulation of the peripheral blood transcriptome by the ingestion of probiotic yoghurt and acidified milk in healthy, young men. PLoS One 13:e0192947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125:S3–S23

    Article  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay PK, Gierahn TM, Roederer M, Love JC (2014) Single-cell technologies for monitoring immune systems. Nat Immunol 15:128–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaussabel D (2015) Assessment of immune status using blood transcriptomics and potential implications for global health. Semin Immunol 27:58–66

    Article  CAS  PubMed  Google Scholar 

  • Chou C, Li MO (2018) Tissue-resident lymphocytes across innate and adaptive lineages. Front Immunol 9:2104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corkum CP, Ings DP, Burgess C, Karwowska S, Kroll W, Michalak TI (2015) Immune cell subsets and their gene expression profiles from human PBMC isolated by vacutainer Cell Preparation Tube (CPT™) and standard density gradient. BMC Immunol 16:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniloski Z, Jordan TX, Wessels H-H, Hoagland DA, Kasela S, Legut M, Maniatis S, Mimitou EP, Lu L, Geller E et al (2021) Identification of required host factors for SARS-CoV-2 infection in human cells. Cell 184:92–105.e116

    Article  CAS  PubMed  Google Scholar 

  • Davenport EE, Burnham KL, Radhakrishnan J, Humburg P, Hutton P, Mills TC, Rautanen A, Gordon AC, Garrard C, Hill AVS et al (2016) Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med 4:259–271

    Article  PubMed  PubMed Central  Google Scholar 

  • Derbinski J, Pinto S, Rosch S, Hexel K, Kyewski B (2008) Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism. Proc Natl Acad Sci U S A 105:657–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhalla F, Baran-Gale J, Maio S, Chappell L, Hollander GA, Ponting CP (2020) Biologically indeterminate yet ordered promiscuous gene expression in single medullary thymic epithelial cells. EMBO J 39:e101828

    Article  CAS  PubMed  Google Scholar 

  • Dumeaux V, Olsen KS, Nuel G, Paulssen RH, Børresen-Dale A-L, Lund E (2010) Deciphering normal blood gene expression variation – the NOWAC postgenome study. PLoS Genet 6:e1000873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A 89:3010–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel P, Boumsell L, Balderas R, Bensussan A, Gattei V, Horejsi V, Jin B-Q, Malavasi F, Mortari F, Schwartz-Albiez R et al (2015) CD nomenclature 2015: human leukocyte differentiation antigen workshops as a driving force in immunology. J Immunol (Baltimore, Md : 1950) 195:4555–4563

    Article  CAS  Google Scholar 

  • Engleman EG, Benike CJ, Grumet FC, Evans RL (1981) Activation of human T lymphocyte subsets: helper and suppressor/cytotoxic T cells recognize and respond to distinct histocompatibility antigens. J Immunol (Baltimore, Md : 1950) 127:2124–2129

    CAS  Google Scholar 

  • Finnish-German APECED Consortium (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17:399–403

    Article  Google Scholar 

  • Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306

    Article  CAS  PubMed  Google Scholar 

  • Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG (2000) The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu Rev Immunol 18:495–527

    Article  CAS  PubMed  Google Scholar 

  • Giraud M, Yoshida H, Abramson J, Rahl PB, Young RA, Mathis D, Benoist C (2012) Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci U S A 109:535–540

    Article  CAS  PubMed  Google Scholar 

  • Golumbeanu M, Cristinelli S, Rato S, Munoz M, Cavassini M, Beerenwinkel N, Ciuffi A (2018) Single-cell RNA-seq reveals transcriptional heterogeneity in latent and reactivated HIV-infected cells. Cell Rep 23:942–950

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Zhang Y, Zheng L, Zheng C, Song J, Zhang Q, Kang B, Liu Z, Jin L, Xing R et al (2018) Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med 24:978–985

    Article  CAS  PubMed  Google Scholar 

  • Hajdu SI (2003) A note from history: the discovery of blood cells. Ann Clin Lab Sci 33:237–238

    PubMed  Google Scholar 

  • Hardy RR, Hayakawa K (2001) B cell development pathways. Annu Rev Immunol 19:595–621

    Article  CAS  PubMed  Google Scholar 

  • Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa K, Hardy RR, Parks DR, Herzenberg LA (1983) The "Ly-1 B" cell subpopulation in normal immunodefective, and autoimmune mice. J Exp Med 157:202–218

    Article  CAS  PubMed  Google Scholar 

  • Homuth G, Wahl S, Müller C, Schurmann C, Mäder U, Blankenberg S, Carstensen M, Dörr M, Endlich K, Englbrecht C et al (2015) Extensive alterations of the whole-blood transcriptome are associated with body mass index: results of an mRNA profiling study involving two large population-based cohorts. BMC Med Genet 8:65

    Google Scholar 

  • Ishikawa T, Akiyama N, Akiyama T (2021) In pursuit of adult progenitors of thymic epithelial cells. Front Immunol 12:621824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam S, Kjällquist U, Moliner A, Zajac P, Fan J-B, Lönnerberg P, Linnarsson S (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21:1160–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A, Amit I (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types, vol 343. Science (New York, N.Y.), pp 776–779

    Google Scholar 

  • Jayasinghe SN (2020) Reimagining flow cytometric cell sorting. Adv Biosyst 4:e2000019

    Article  PubMed  Google Scholar 

  • Jiang Y, Li Y, Zhu B (2015) T-cell exhaustion in the tumor microenvironment. Cell Death Dis 6:e1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadouri N, Nevo S, Goldfarb Y, Abramson J (2020) Thymic epithelial cell heterogeneity: TEC by TEC. Nat Rev Immunol 20:239–253

    Article  CAS  PubMed  Google Scholar 

  • Karamitros D, Stoilova B, Aboukhalil Z, Hamey F, Reinisch A, Samitsch M, Quek L, Otto G, Repapi E, Doondeea J et al (2018) Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. Nat Immunol 19:85–97

    Article  CAS  PubMed  Google Scholar 

  • Karsten SL, Kudo LC, Bragin AJ (2011) Use of peripheral blood transcriptome biomarkers for epilepsy prediction. Neurosci Lett 497:213–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann SHE (2017) Emil von Behring: translational medicine at the dawn of immunology. Nat Rev Immunol 17:341–343

    Article  CAS  PubMed  Google Scholar 

  • Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M, Kisand KV, Ersvaer E, Perheentupa J, Erichsen MM, Bratanic N et al (2010) Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med 207:299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein CA, Seidl S, Petat-Dutter K, Offner S, Geigl JB, Schmidt-Kittler O, Wendler N, Passlick B, Huber RM, Schlimok G et al (2002) Combined transcriptome and genome analysis of single micrometastatic cells. Nat Biotechnol 20:387–392

    Article  CAS  PubMed  Google Scholar 

  • Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 14:377–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh AS, Kuo AJ, Park SY, Cheung P, Abramson J, Bua D, Carney D, Shoelson SE, Gozani O, Kingston RE et al (2008) Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc Natl Acad Sci U S A 105:15878–15883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koumakis L (2020) Deep learning models in genomics; are we there yet? Comput Struct Biotechnol J 18:1466–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar PG, Laloraya M, Wang CY, Ruan QG, Davoodi-Semiromi A, Kao KJ, She JX (2001) The autoimmune regulator (AIRE) is a DNA-binding protein. J Biol Chem 276:41357–41364

    Article  CAS  PubMed  Google Scholar 

  • Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, Yamada RG, Ueda HR, Saitou M (2006) An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 34:e42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuroda N, Mitani T, Takeda N, Ishimaru N, Arakaki R, Hayashi Y, Bando Y, Izumi K, Takahashi T, Nomura T et al (2005) Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice. J Immunol 174:1862–1870

    Article  CAS  PubMed  Google Scholar 

  • Kyewski B, Klein L (2006) A central role for central tolerance. Annu Rev Immunol 24:571–606

    Article  CAS  PubMed  Google Scholar 

  • Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, Keren-Shaul H, Mildner A, Winter D, Jung S et al (2014) Immunogenetics. Chromatin state dynamics during blood formation, vol 345. Science (New York, N.Y.), pp 943–949

    Google Scholar 

  • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maecker HT, McCoy JP, Nussenblatt R (2012) Standardizing immunophenotyping for the human immunology project. Nat Rev Immunol 12:191–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahata B, Zhang X, Kolodziejczyk AA, Proserpio V, Haim-Vilmovsky L, Taylor AE, Hebenstreit D, Dingler FA, Moignard V, Göttgens B et al (2014) Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep 7:1130–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathis D, Benoist C (2009) Aire. Annu Rev Immunol 27:287–312

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M (2011) Contrasting models for the roles of Aire in the differentiation program of epithelial cells in the thymic medulla. Eur J Immunol 41:12–17

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Rodrigues PM, Sousa L, Tsuneyama K, Matsumoto M, Alves NL (2019) The ins and outs of thymic epithelial cell differentiation and function. In: Passos GA (ed) Thymus transcriptome and cell biology. Springer, pp 35–66

    Chapter  Google Scholar 

  • McCue ME, McCoy AM (2017) The scope of big data in one medicine: unprecedented opportunities and challenges. Front Vet Sci 4:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Mello VDF, Kolehmanien M, Schwab U, Pulkkinen L, Uusitupa M (2012) Gene expression of peripheral blood mononuclear cells as a tool in dietary intervention studies: what do we know so far? Mol Nutr Food Res 56:1160–1172

    Article  PubMed  CAS  Google Scholar 

  • Miao Y-L, Xiao Y-L, Du Y, Duan L-P (2013) Gene expression profiles in peripheral blood mononuclear cells of ulcerative colitis patients. World J Gastroenterol 19:3339–3346

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller CN, Proekt I, von Moltke J, Wells KL, Rajpurkar AR, Wang H, Rattay K, Khan IS, Metzger TC, Pollack JL et al (2018) Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature 559:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miragaia RJ, Zhang X, Gomes T, Svensson V, Ilicic T, Henriksson J, Kar G, Lonnberg T (2018) Single-cell RNA-sequencing resolves self-antigen expression during mTEC development. Sci Rep 8:685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, Carré C, Burdin N, Visan L, Ceccarelli M, Poidinger M et al (2019) RNA-seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep 26:1627–1640.e1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol (Baltimore, Md : 1950) 136:2348–2357

    CAS  Google Scholar 

  • Mostafavi S, Yoshida H, Moodley D, LeBoité H, Rothamel K, Raj T, Ye CJ, Chevrier N, Zhang S-Y, Feng T et al (2016) Parsing the interferon transcriptional network and its disease associations. Cell 164:564–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myhre AG, Halonen M, Eskelin P, Ekwall O, Hedstrand H, Rorsman F, Kampe O, Husebye ES (2001) Autoimmune polyendocrine syndrome type 1 (APS I) in Norway. Clin Endocrinol 54:211–217

    Article  CAS  Google Scholar 

  • Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M, Krohn KJ, Lalioti MD, Mullis PE, Antonarakis SE et al (1997) Positional cloning of the APECED gene. Nat Genet 17:393–398

    Article  CAS  PubMed  Google Scholar 

  • Niki S, Oshikawa K, Mouri Y, Hirota F, Matsushima A, Yano M, Han H, Bando Y, Izumi K, Matsumoto M et al (2006) Alteration of intra-pancreatic target-organ specificity by abrogation of Aire in NOD mice. J Clin Invest 116:1292–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolich-Zugich J, Slifka MK, Messaoudi I (2004) The many important facets of T-cell repertoire diversity. Nat Rev Immunol 4:123–132

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa Y, Hirota F, Yano M, Kitajima H, Miyazaki J, Kawamoto H, Mouri Y, Matsumoto M (2010) Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation. J Exp Med 207:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME, Habib N, Yosef N, Chang CY, Shay T et al (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144:296–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohigashi I, Zuklys S, Sakata M, Mayer CE, Zhanybekova S, Murata S, Tanaka K, Hollander GA, Takahama Y (2013) Aire-expressing thymic medullary epithelial cells originate from beta5t-expressing progenitor cells. Proc Natl Acad Sci U S A 110:9885–9890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Org T, Chignola F, Hetenyi C, Gaetani M, Rebane A, Liiv I, Maran U, Mollica L, Bottomley MJ, Musco G, Peterson P (2008) The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep 9:370–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oven I, Brdickova N, Kohoutek J, Vaupotic T, Narat M, Peterlin BM (2007) AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. Mol Cell Biol 27:8815–8823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packer D (2021) The history of the antibody as a tool. Acta Histochem 123:151710

    Article  CAS  PubMed  Google Scholar 

  • Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang Y-H, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JE, Botting RA, Dominguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E et al (2020) A cell atlas of human thymic development defines T cell repertoire formation. Science 367:eaay3224

    Google Scholar 

  • Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, Drake AM, Chen Z, Sen DR, Kurachi M et al (2016) Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science (New York, NY) 354:1160–1165

    Article  CAS  Google Scholar 

  • Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Reinmaa E, Sutphin GL, Zhernakova A, Schramm K et al (2015) The transcriptional landscape of age in human peripheral blood. Nat Commun 6:8570

    Article  CAS  PubMed  Google Scholar 

  • Peterson P, Peltonen L (2005) Autoimmune polyendocrinopathy syndrome type 1 (APS1) and AIRE gene: new views on molecular basis of autoimmunity. J Autoimmun 25(Suppl):49–55

    Article  CAS  PubMed  Google Scholar 

  • Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098

    Article  CAS  PubMed  Google Scholar 

  • Pitkanen J, Doucas V, Sternsdorf T, Nakajima T, Aratani S, Jensen K, Will H, Vahamurto P, Ollila J, Vihinen M et al (2000) The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein. J Biol Chem 275:16802–16809

    Article  CAS  PubMed  Google Scholar 

  • Proserpio V, Mahata B (2016) Single-cell technologies to study the immune system. Immunology 147:133–140

    Article  CAS  PubMed  Google Scholar 

  • Puel A, Doffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, Picard C, Cobat A, Ouachee-Chardin M, Toulon A, Bustamante J et al (2010) Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 207:291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Yalamanchili HK, Qin J, Yan B, Wang J (2015) The current status and challenges in computational analysis of genomic big data. Big Data Res 2:12–18

    Article  Google Scholar 

  • Rankin LC, Artis D (2018) Beyond host defense: emerging functions of the immune system in regulating complex tissue physiology. Cell 173:554–567

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441:988–991

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg EV (2014) Transcriptional control of early T and B cell developmental choices. Annu Rev Immunol 32:283–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouse BT, Sehrawat S (2010) Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol 10:514–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy AL (2019) Transcriptional regulation in the immune system: one cell at a time. Front Immunol 10:1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saelens W, Cannoodt R, Todorov H, Saeys Y (2019) A comparison of single-cell trajectory inference methods. Nat Biotechnol 37:547–554

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol (Baltimore, Md : 1950) 155:1151–1164

    CAS  Google Scholar 

  • Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N (2020) Regulatory T cells and human disease. Annu Rev Immunol 38:541–566

    Article  CAS  PubMed  Google Scholar 

  • Saltis M, Criscitiello MF, Ohta Y, Keefe M, Trede NS, Goitsuka R, Flajnik MF (2008) Evolutionarily conserved and divergent regions of the autoimmune regulator (Aire) gene: a comparative analysis. Immunogenetics 60:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Ramón S, Bermúdez A, González-Granado LI, Rodríguez-Gallego C, Sastre A, Soler-Palacín P (2019) Primary and secondary immunodeficiency diseases in oncohaematology: warning signs, diagnosis, and management. Front Immunol 10:586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt M, Hopp L, Arakelyan A, Kirsten H, Engel C, Wirkner K, Krohn K, Burkhardt R, Thiery J, Loeffler M et al (2020) The human blood transcriptome in a large population cohort and its relation to aging and health. Front Big Data 3:548873

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmiedel BJ, Singh D, Madrigal A, Valdovino-Gonzalez AG, White BM, Zapardiel-Gonzalo J, Ha B, Altay G, Greenbaum JA, McVicker G et al (2018) Impact of genetic polymorphisms on human immune cell gene expression. Cell 175:1701–1715.e1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seumois G, Vijayanand P (2019) Single-cell analysis to understand the diversity of immune cell types that drive disease pathogenesis. J Allergy Clin Immunol 144:1150–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, Schwartz S, Yosef N, Malboeuf C, Lu D et al (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen-Orr SS, Gaujoux R (2013) Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Curr Opin Immunol 25:571–578

    Article  CAS  PubMed  Google Scholar 

  • Smale ST, Fisher AG (2002) Chromatin structure and gene regulation in the immune system. Annu Rev Immunol 20:427–462

    Article  CAS  PubMed  Google Scholar 

  • Sohn E (2017) Diagnosis: frontiers in blood testing. Nature 549:S16–S18

    Article  CAS  PubMed  Google Scholar 

  • Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176:287–292

    Article  CAS  PubMed  Google Scholar 

  • Stewart CA, Gay CM, Xi Y, Sivajothi S, Sivakamasundari V, Fujimoto J, Bolisetty M, Hartsfield PM, Balasubramaniyan V, Chalishazar MD et al (2020) Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nat Can 1:423–436

    Article  CAS  Google Scholar 

  • Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA (2017) Single-cell transcriptomics to explore the immune system in health and disease. Science (New York, NY) 358:58–63

    Article  CAS  Google Scholar 

  • Talal N (1973) Lymphocyte heterogeneity and function. Arthritis Rheum 16:422–425

    Article  CAS  PubMed  Google Scholar 

  • Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382

    Article  CAS  PubMed  Google Scholar 

  • Uhlen M, Karlsson MJ, Zhong W, Tebani A, Pou C, Mikes J, Lakshmikanth T, Forsström B, Edfors F, Odeberg J et al (2019) A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science (New York, NY) 366:eaax9198

    Google Scholar 

  • Ulyanchenko S, O'Neill KE, Medley T, Farley AM, Vaidya HJ, Cook AM, Blair NF, Blackburn CC (2016) Identification of a bipotent epithelial progenitor population in the adult thymus. Cell Rep 14:2819–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veenstra TD (2021) Omics in systems biology: current progress and future outlook. Proteomics 21:e2000235

    Article  PubMed  CAS  Google Scholar 

  • Wong K, Lister NL, Barsanti M, Lim JM, Hammett MV, Khong DM, Siatskas C, Gray DH, Boyd RL, Chidgey AP (2014) Multilineage potential and self-renewal define an epithelial progenitor cell population in the adult thymus. Cell Rep 8:1198–1209

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Liu M, Zhang Y, Wang B, Zhu C, Wang C, Li Q, Huo Y, Guo J, Xu C et al (2021) Single-cell transcriptomic landscape of human blood cells. Natl Sci Rev 8:nwaa180

    Google Scholar 

  • Yano M, Kuroda N, Han H, Meguro-Horike M, Nishikawa Y, Kiyonari H, Maemura K, Yanagawa Y, Obata K, Takahashi S et al (2008) Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J Exp Med 205:2827–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Bansal K, Schaefer U, Chapman T, Rioja I, Proekt I, Anderson MS, Prinjha RK, Tarakhovsky A, Benoist C, Mathis D (2015) Brd4 bridges the transcriptional regulators, Aire and P-TEFb, to promote elongation of peripheral-tissue antigen transcripts in thymic stromal cells. Proc Natl Acad Sci U S A 112:E4448–E4457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Lareau CA, Ramirez RN, Rose SA, Maier B, Wroblewska A, Desland F, Chudnovskiy A, Mortha A, Dominguez C et al (2019) The cis-regulatory atlas of the mouse immune system. Cell 176(897-912):e820

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshida, H., Matsumoto, M., Matsumoto, M. (2022). Transcriptomics to Dissect the Immune System. In: Passos, G.A. (eds) Transcriptomics in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-87821-4_10

Download citation

Publish with us

Policies and ethics