Skip to main content

Optical Fiber in Nuclear Power Plants: Applications to Improve the Reliability, Safety and Work Stability of Fault Control Instrumentation

  • Chapter
  • First Online:
Systems, Decision and Control in Energy III

Abstract

The paper presents a design method, which is aimed at reducing the effect of ionizing radiation on fault control instrumentation. It is shown that the use of optical fiber in the structure of fault control instrumentation improves the reliability, safety and work stability of fault control instrumentation. The use of optical fiber provides an opportunity to improve the metrological characteristics of information and measurement channels for valves control system. In most cases the control must be carried out in rather harsh internal working environment of the diagnostic object, which is characterized by the presence of strong magnetic fields, high temperature, high humidity, ozone, cross-guidance between communication lines and ionizing radiation of NPPs. Using the advantages of using valet fault control instrumentation, fault control instruments were implemented for valves control system with optical fiber, which can function in the pressurized zone of NPP reactors. Scheme of the valves control system controller with the fiber-optic sensor proposed. The conducted theoretical researches allowed developing optoelectronic control systems with higher technical characteristics, which allows improving the quality of control of valet system operation in the pressurized zone of NPP reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yastrebenetsky, M.A., Rosen, Yu.V., Gromov, G.V., Inushev, V.V., Nosovsky, A.V., Gashev, M.Kh., Stolyarchuk, B.V.: Requirements for information and control systems of Ukrainian NPPs based on the analysis of the accident at the Fukushima-1 NPP. Nucl. Radioactivity Safety 4(52), 3–10 (2011) (In Russian)

    Google Scholar 

  2. Electric drives multi-turn for nuclear power plants, 55 p (2012) (In Russian)

    Google Scholar 

  3. NP-068–05. General technical requirements, 67 p (2005) (In Russian)

    Google Scholar 

  4. GOST 26843-86. Nuclear power reactors. General requirements for the control and protection system, 15 p (2005)

    Google Scholar 

  5. Blinov, I., Zaitsev, Ie.O., Kuchanskyy, V.V.: Problems, methods and means of monitoring power losses in overhead transmission lines. In: Babak, V., Isaienko, V., Zaporozhets, A. (eds.) Systems, Decision and Control in Energy I, pp. 123–136. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-48583-2_8

  6. Zaitsev, Ie.O, Kuchanskyy, V.V.: Corona discharge problem in extra high voltage transmission line. In: Zaporozhets, A., Artemchuk, V. (eds.) Systems, Decision and Control in Energy II, pp. 3–30. Springer, Berlin (2021). https://doi.org/10.1007/978-3-030-69189-9_1

  7. Kuchanskyi, V., Zaitsev, Ie.: Corona discharge power losses measurement systems in extra high voltage transmissions lines. In: Proceedings of 2020 IEEE 7th International Conference on Energy Smart Systems (ESS), Kyiv, Ukraine, pp. 48–53 (2020). https://doi.org/10.1109/ESS50319.2020.9160088

  8. Levytskyi, A.S., Zaitsev, I.O., Kobzar, K.O.: Measuring the stroke of cone disk springs in power accumulators of the turbogenerator stator core using a capacitive sensor. Devices Methods Measurements 9(2), 121–129 (2018). https://doi.org/10.21122/2220-9506-2018-9-2-121-129

    Google Scholar 

  9. Zaitsev, I.O., Sydorchuk, V.E., Shpylka, A.: Application of the spectrum analysis with using berg method to developed special software tools for optical vibration diagnostics system. Devices Methods Measurements 7(2), 186–194. (2016). https://doi.org/10.21122/2220-9506-2016-7-2-186-194 (In Russian)

  10. Senderovich, G.A., Zaporozhets, A.O., Gryb, O.G., Karpaliuk, I.T., Shvets, S.V., Samoilenko, I.A.: Experimental studies of the method for determining location of damage of overhead power lines in the operation mode. In: Sokol, Y.I., Zaporozhets, A.O (eds.) Control of Overhead Power Lines with Unmanned Aerial Vehicles (UAVs), pp. 55–77. Springer, Berlin (2021). https://doi.org/10.1007/978-3-030-69752-5_4

  11. Zaitsev, I., Levytskyi, A., Kromplyas, B., Panchyk, M., Bereznychenko, V.: Study influence industrial frequency magnetic field on capacitive pressing sensor for large turbogenerator core clamping system. In: Proceedings of the 2019 IEEE Ukraine International Conference On Electrical And Computer Engineering (UKRCON-2019), 2–6 Jule, Lviv (Ukraine), pp. 566–569 (2019). https://doi.org/10.1109/UKRCON.2019.8879949

  12. Gryb, O.G., Karpaliuk, I.T., Zaporozhets, A.O., Shvets, S.V., Rudevich, N.V.: Acoustic diagnostics for determining the appearance of corona dischargee. In: Sokol, Y.I., Zaporozhets, A.O. (eds.) Control of Overhead Power Lines with Unmanned Aerial Vehicles (UAVs), pp. 127–157. Springer, Berlin (2021). https://doi.org/10.1007/978-3-030-69752-5_9

  13. Zaitsev, I.O., Kuchansky, V.V., Gunko, I.O.: Improving the operational reliability and efficiency of electrical networks and electrical equipment. Int. Sci. J. “Grail of Science” 5, 144–152 (2021). https://doi.org/10.36074/grail-of-science.04.06.2021.027 (In Ukraine)

  14. Alishev, Ya.V., Uryadov, V.N. : Perspective Information Technologies in Fiber-Optic Telecommunication Networks. Bestprint, Minsk 192 p (2003)

    Google Scholar 

  15. Baranov, G., et al.: S.M.A.R.T. technologies for transport tests networks, exploitation and repair tools. In: Proceedings of the International Conference Artificial Intelligence and Smart Systems (ICAIS), 25–27, March 2021, Pichanur (India), pp. 621–625 (2021). https://doi.org/10.1109/ICAIS50930.2021.9396055

  16. Monastyrsky, Z.Y., Kromplyas, B.A.: Reduction of errors from the influence of distributed parameters of connecting lines in remote measurements of parameters of imitation sensors. Proc. Inst. Electrodyn. Natl. Acad. Sci. Ukraine 2(11), pp. 91–94. (2005) (In Ukraine)

    Google Scholar 

  17. Culshaw, B., Dakin, J.: Optical Fiber Sensors: Systems and Applications, 492 p. Artech House, Boston (1989)

    Google Scholar 

  18. Levitsky, A.S., Fedorenko, G.M.: Increasing the reliability and safety of operation of powerful hydrogenerators by using fiber-optic information and measuring systems. Ukraine Hydropower 3–4, 18–22 (2011). (In Ukraine)

    Google Scholar 

  19. Zhizhin, V.: Fiber optic sensors: prospects for industrial applications. Electron. Components 12, 17–23 (2010)

    Google Scholar 

  20. Okosi, T., et al.: Fiber optic sensors. Energoatomidat 256 p (1991) (In Russian)

    Google Scholar 

  21. Listvin, V., Logozinsky, V.: Miniature fiber-optic rotation sensors. Design, technology, characteristics. Electron.: Sci. Tech. Bus. 8, 72–76 (2006)

    Google Scholar 

  22. Neugodnikov, A., Pospelov, V.: Fiber optic deformation sensor. Electron.: Sci. Technol. Bus. 1, 74–75 (2006) (In Russian)

    Google Scholar 

  23. Monastyrsky, Z.Y., et al.: Fiber-optic sensors for NPP control shut-off valves. Ukraine Hydropower 3–4, 35–38 (2013) (In Ukraine)

    Google Scholar 

  24. Kuzmin, V.V., Vakulenko, A.N.: Operating modes and the most common damages of hydrogenerators of HPPs of the Dnieper cascade. Hydropower Ukraine 2, 22–30 (2005)

    Google Scholar 

  25. Brutsch, R., Tari, M., Frohlich, K., Weiers, T., Vogelsang, R.: Insulation failure mechanisms of power generators. IEEE Electr. Insul. Mag. 24(4), 17–25 (2008). https://doi.org/10.1109/mei.2008.4581636.3

    Article  Google Scholar 

  26. Beloglazov, A.V., Glazyrin, G.V.: Development of monitoring tools for the beating of the hydraulic unit shaft. Collect. Sci. Works NSTU 3(53), 79–84 (2008)

    Google Scholar 

  27. Rassovsky, V.L.: Ukrhydroenergo 15 years old. Hydropower Ukraine 3–4, 4–7 (2018)

    Google Scholar 

  28. ISO 20816-5:2018. Mechanical vibration. Measurement and evaluation of machine vibration. Part 5: Machine sets in hydraulic power generating and pump-storage plants. ISO/TC 108/SC 2 Measurement and evaluation of mechanical vibration and shock as applied to machines, vehicles and structures, 60 p (2018)

    Google Scholar 

  29. ISO 7919-5:2005. Mechanical vibration. Evaluation of machine vibration by measurements on rotating shafts . Part 5: Machine sets in hydraulic power generating and pumping plants. ISO/TC 108/SC 2 Measurement and evaluation of mechanical vibration and shock as applied to machines, vehicles and structures, 16 p (2005)

    Google Scholar 

  30. Villnow, M., Willsch, M., Bosselmann, T., Schmauss, B.: Monitoring applications of power generators for the increase of energy efficiency using novel fiber optical sensors. In: SPIE Eco-Photonics 2011: Sustainable Design, Manufacturing, and Engineering Workforce Education for a Green Future, vol. 8065, pp. 154–162. Strasbourg, France (2011) https://doi.org/10.1117/12.882864

  31. Klinov, D.A., Gulevich, A.V., Kagramanyan, V.S., Dekusar, V.M., Usanov, V.D.: Development of sodium-cooled fast reactors under modern conditions: challenges and stimuli. At. Energ. 125(3), 143–148 (2019)

    Article  Google Scholar 

  32. Alekseev, B.A.: Determination of the State (Diagnostics) of Large Turbine Generators, 152 p. Publishing house NTs ENAS (2001) (In Russian)

    Google Scholar 

  33. Alekseev, B.A.: Determination of the State (diagnostics) of Large Hydrogenerators, 144 p. NTs ENAS Publishing House (2002) (In Russian)

    Google Scholar 

  34. A New Conception on On-Line Monitoring and Diagnose of Turbo generators. http://www.marubun.co.jp/product/measurement/electric/qgc18e000003b8jf-att/Turbogenerators.pdf

  35. On-line monitoring of hydro generating units for optimized operation and maintenance. http://www.vibrosystm.com/pdf/ZOOME.PDF

  36. VibraWatchTM—Vibration monitoring system. http://www.vibrosystm.com/en/vibrae.html

  37. AGMSR—Air gap monitoring system. http://www.vibrosystm.com/en/agmme.html

  38. Stator winding vibration measurement systems. http://www.vibrosystm.com/pdf/FOASBVR.pdf

  39. Turbine clearance measurement. Underwater proximity probe. http://www.vibrosystm.com/en/btce.html

  40. Latenko, V.I., et al.: Digital converters metrological specification for resistant thermal thermosensors compare. Tekhnichna Elektrodynamika 1, 84–89 (Ukr) (2021) https://doi.org/10.15407/techned2021.01.084 (In Ukraine)

  41. Zaitsev, Ie.O., Levytskyi, A.S., Sydorchuk, V.E.: Air gap control system for hydrogenerators. Devices Methods Measurements 8(2), 122–130. (2017) https://doi.org/10.21122/2220-9506-2017-8-2-122-130 (In Russian)

  42. Zaitsev, Ie., Levytskyi, A., Bereznychenko, V.: Hybrid diagnostics systems for power generators faults: systems design principle and shaft run-out sensors. In: Power Systems Research and Operation: Selected Problems. Springer, Berlin (2021)

    Google Scholar 

  43. Zaitsev, Ie.O., Levytskyi, A.S., Novik, A.I., Bereznychenko, V.O., Smyrnova, A.M.: Research of a capacitive distance sensor to grounded surface. Telecommun. Radio Eng. 78(2), 173–180 (2019) https://doi.org/10.1615/TelecomRadEng.v78.i2.80

  44. Zargari, A., Blackburn, T.R.: Modified optical fibre sensor for PD detection in high-voltage power equipment. In: The IEEE International Symposium on Electrical Insulation, June 16–19, pp. 424–427. IEEE, Montreal (1996)

    Google Scholar 

  45. Levytskyi, A.S., Zaitsev, I.O., Bereznychenko, V.O., Sukhorukova, O.E.: Measuring transducer for air gap capacitive sensor in hydrogenerator. Devices Methods Measurements 11(1), 33–41 (2020). https://doi.org/10.21122/2220-9506-2020-11-1-33-41 (In Russian)

  46. Lamela, H., Garcia-Souto, J.A., Macia-Sanahuja, C.: Interferometric optical fiber sensors for measurements within oil-filled power transformers. Opt. Fibers: Appl. 5952, 56–63 (2005)

    Google Scholar 

  47. Wangn, P., Semenova, Y., Wu, Q., Farrell, G.: A fiber-optic voltage sensor based on macro bending structure. Opt. Laser Technol. 43(5), 922–925 (2011). https://doi.org/10.1016/j.optlastec.2011.01.003

    Article  Google Scholar 

  48. Zaitsev, Ie.O., Levytskyi, A.S., Kromplyas, B.A.: Capacitive distance sensor with coplanar electrodes for large turbogenerator core clamping system. In: Proceedings of the 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), April 16–18, Kiev (Ukraine), pp. 644–647 (2019). https://doi.org/10.1109/ELNANO.2019.8783916

  49. Zaitsev, I.O., Levytskyi, A.S., Kromplyas, B.A.: Hybrid capacitive sensor for hydro- and turbo generator monitoring system. In: Proceedings of the International Conference on Modern Electrical and Energy System (MEES-17) November 15–17, Kremenchuk, pp. 288–291 (2017). https://doi.org/10.1109/MEES.2017.8248913

  50. Zaitsev, I.O., Levytskyi, A.S.: Determination of response characteristic of capacitive coplanar air gap sensor. In: Proceedings of the 2017 IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS-2017), August 29–June 30, Kyiv, pp. 85–88 (2017). https://doi.org/10.1109/MRRS.2017.8075034

  51. Zaitsev, Ie.O, Levytskyi, A.S.: Hybrid electro-optic capacitive sensors for the fault diagnostic system of power hydrogenerator. In: Ebrahimi, A. (ed) Clean Generators - Advances in Modeling of Hydro and Wind Generators, pp. 25–42. Intechopen (2020). https://doi.org/10.5772/intechopen.77988

  52. Zhihe, Y., Xuhuai, H., Guang, C.: Research of torsional vibration monitoring platform for turbine generator. In: IEEE International Conference on Computer Science and Automation Engineering (CSAE), vol. 3, pp. 577–580 (2012)

    Google Scholar 

  53. Zaitsev, I.O., Levytskyi, A.S., Sydorchuk, V.E.: Air gap control system for hydrogenerators. Devices Methods Measurements 8(2), 122–130 (2017). https://doi.org/10.21122/2220-9506-2017-8-2-122-130 (In Russian)

  54. Li, J., Shi, W., Li, Q.: Research on interterm short circuit fault location of rotor winding in synchronous electric machines. In: 20th International Conference on Electrical Machines and Systems (ICEMS), pp. 1–4 (2017)

    Google Scholar 

  55. Levytskyi, A.S, Fedorenko, G.M. Gruboj, O.P.: Monitoring of the status of powerful hydro and turbo generators using capacitive meter for the parameters of mechanical defects, Kyiv, p. 242 (2011) (in Ukrainian)

    Google Scholar 

  56. Rosolem, J.B., Floridia, C., Sanz, J.: Optical system for hydrogenerator monitoring. In: Proceedings of the International Council for Power Electroenergetical Systems CIGRE, Paris (France), pp. 1–8 (2010)

    Google Scholar 

  57. Levytskyi, A.S., Zaitsev, I.O., Kromplyas, B.A.: Determination of the response characteristic of the capacitive sensor of the air gap in the hydrogenerator CGK538/160-70M. Works of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, vol. 43, pp. 134–136 (2016) (in Ukrainian)

    Google Scholar 

  58. Mindrin, V.I., Pachurin, G.V., Rebrushkin, M.N.: Types and causes of vibration of energy machines. Mod. Sci.-Inten. Tech. 5, 32–36 (2015)

    Google Scholar 

  59. Zaitsev, Ie., Shpylka, A., Shpylka, N.: Output signal processing method for fiber Bragg grating sensing system. In: Proceedings of the 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET-2020). Lviv-Slavske, pp. 152–155 (2020). https://doi.org/10.1109/TCSET49122.2020.235412 (in Ukrainian)

  60. Zhukynskyy and other: Information signal converter for hybrid optoelectronic displacement meters. Measur. Comput. Equipment Tech. Process. 4, 31–37 (2017). (in Russian)

    Google Scholar 

  61. Zaitsev, I.O.: Opto-electronic transducers for powerful generators mechanical fault diagnosing systems: software algorithms. Works of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, vol. 55, pp. 94–100 (2020). https://doi.org/10.15407/publishing2020.55.095 (in Ukrainian)

  62. Kiesewetter, D., Malyugin, V., Makarov, S., Korotkov, K., Ming, D., Wei, X.: Application of the optical fibers in the system of determining the distance of jump at ski springboard. In: Proceedings – 2016 Advances in Wireless and Optical Communications RTUWO, pp. 5–8 (2017)

    Google Scholar 

  63. Braginets, I.A., Nizhensky, A.D., et al.: The phase laser measurer of vibrations parameters with an extended frequency range. Tekhnichna elektrodynamika 1, 82–86 (2013) (in Russian)

    Google Scholar 

  64. Braginets, I.A., Nizhensky, A.D., et al.: Dynamic properties of frequency-phase laser range finder systems with digital frequency synthesizers. Tekhnichna elektrodynamika 3, 87–92 (2013) (in Russian)

    Google Scholar 

  65. Zaitsev, E.O.: Analysis error of FMCW measuring systems considering the characteristics the mixers devices. Tekhnichna elektrodynamika 6, 82–87 (2013). (in Russian)

    Google Scholar 

  66. Davydov, V.V., Dudkin, V.I., Karseev, A.Yu.: Fiber – optic communication line for the NMR signals transmission in the control systems of the ships atomic power plants work. Opt. Memory Neural Networks (Inform. Opt.) 23(4), 259–264 (2014)

    Google Scholar 

  67. Davydov, V.V., Dudkin, V.I. and Karseev, A.Yu.: Fiber – optic imitator of accident situation for verification of work of control systems of atomic energy plants on ships. Opt. Memory Neural Networks (Inform. Opt.) 23(3), 170–176 (2014)

    Google Scholar 

  68. Zaitsev, E.O.: A study of synthesizers for multi frequency phase range finder system with using LABVIEV. Tekhnichna elektrodynamika 2, 84–88 (2014). (in Russian)

    Google Scholar 

  69. Braginets, I.A., et al.: Increasing the noise immunity of the phase laser ranging systems. Tekhnichna elektrodynamika 3, 91–96 (2014) (in Russian)

    Google Scholar 

  70. Latenko, V.I., Skripnik, I.Yu., et al.: Features of application of means of optical rangefinder for measurement of height of clouds. Measur. Comput. Equipment Tech. Process. 2, 44–50 (2014) (in Ukrainian)

    Google Scholar 

  71. Zaitsev, Ie.O.: Analysis of sampling error on the accuracy of laser range finders based on the discrete hilbert transform. Tekhnichna elektrodynamika 4, 89–94 (2015) (in Russian)

    Google Scholar 

  72. Braginets, I.A., Sydorchuk, V.E., et al.: Analysis of phase system of automatic frequency correction in laser rangefinder. Tekhnichna elektrodynamika 1, 91–94 (2015) (in Russian)

    Google Scholar 

  73. Braginets, I.A., Masyurenko, Yu.A., et al.: Appling of compensatory measuring method of phase shift for laser range finder. Tekhnichna elektrodynamika 3, 75–80 (2015) (in Russian)

    Google Scholar 

  74. Fidanboylu, K., Efendioglu, H.S.: Fiber optic sensors and their application. In: 5th International Advanced Technologies Symposium (IATS’09), May 13–15, Karabuk, Turkey, pp. 1–6 (2009). http://iats09.karabuk.edu.tr/press/pro/02_KeynoteAddress.pdf

  75. Bereznychenko, V.O.: Definition of the shafts radial beating capacitive sensor response function by computer modeling. In: Works of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, Vol. 58, pp. 107–110 (2021). https://doi.org/10.15407/publishing2021.58.107 (in Ukrainian)

  76. Garmash, V.B., Egorov, F.A., Kolomiets, L.N., Neugodnikov, A.P., et al.: Opportunities, tasks and prospects of fiber-optic measuring systems in modern instrument making. Special issue “Foton-express” 6, 128–140 (2005)

    Google Scholar 

  77. Sokolov, A.N., Yatseev, V.A.: Fiber-optic sensors and systems: principles of construction, possibilities and prospects. LightWave, Russion Edition 4, 44–46 (2006)

    Google Scholar 

  78. Tianming, C.: Capacitive Sensors for Measuring Complex Permittivity of Planar and Cylindrical Structures, 204 p. Iowa (2012)

    Google Scholar 

  79. Baxter, L.K.: Capacitive Sensors: Design and Applications, 320 p. IEEE Press, New York (1997)

    Google Scholar 

  80. Sokolovsky, A.A.: Micro-optical Elements and Devices for Fiber-Optical Measuring Systems, 225 p. Moscow (2009) (In Russian)

    Google Scholar 

  81. Strack, S., Weidner, J.R., Ruhr, A.D., Bosselmann, T., Villnow, M., Willsch, M.: Experience with special fiber optic sensors for online monitoring of high voltage stator windings at large turbine generators. In: The AMA Conferences “Long Term Reliability and Machine Operation Diagnosis”. SENSOR-2013, OPTO-2013, IRS-2013, pp. 610–617 (2013). https://doi.org/10.5162/sensor2013/D8.3

  82. Kasinathan, M., Sosamma, S., BabuRao, C., Murali, N., Jayakumar, T.: Fiber optic sensors for nuclear power plant applications. In: AIP Conference Proceedings, Vol. 1430(1), pp. 1013–1020 (2012)

    Google Scholar 

  83. Davydov, R., Antonov, V., Moroz, A.: Parameter control system for a nuclear power plant based on fiber-optic sensors and communication lines. In: 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech) (2019). https://doi.org/10.1109/EExPolytech.2019.8906791

  84. Grebenikova, N.M., Smirnov, K.J., Artemiev, V.V., Davydov, V.V., Kruzhalov, S.V.: The universal optical method for condition control of flowing medium. J. Phys. 1038(1), 1–8 (2018)

    Google Scholar 

  85. Fiber-Optic sensing used to protect nuclear power plant. https://www.fiberbroadband.org

  86. Buymistriuc, G.Y.: Radiation-hard and intelligent optical fiber sensors for nuclear power plants (2011)

    Google Scholar 

  87. Liokumovich, L.B.: Fiber-Optical Interferometric Measurements, 110 p. Polytechnic Publishing House, St. Petersburg (2007)

    Google Scholar 

  88. Technical report MTe4P00647-1: Fiber-optic sensors for high-voltage ap-plications. SP Technical Research Institute of Sweden, Västeråsen 13 p (2015)

    Google Scholar 

  89. Rahmatian, F., Blake, J.N.: Applications of high-voltage fiber optic current sensors. In: 2006 IEEE Power Engineering Society General Meeting, 18–22 June 2006. Canada, Montreal, QC, pp. 1–6. (2006). https://doi.org/10.1109/PES.2006.1709517

  90. Zargari, A., Blackburn, T.R.: Modified optical fiber sensor for PD detection in high-voltage power equipment. In: Conference of the IEEE International Symposium on Electrical Insulation, pp. 424–427. IEEE, Montreal (1996)

    Google Scholar 

  91. Dong, B.: Fiber optic sensors for on-line, real time power transformer health monitoring. Virginia Polytechnic Institute and State University 83 p (2012)

    Google Scholar 

  92. Li, Y., Yang, Z., Zhang, L. Investigation of wind turbine blade monitoring based on optical fiber Brillouin sensor. In: International Conference on Sustainable Power Generation and Supply, pp.1–4. Nanjing, China (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ievgen Zaitsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaitsev, I., Levytskyi, A., Bogdan, K., Pavlo, R. (2022). Optical Fiber in Nuclear Power Plants: Applications to Improve the Reliability, Safety and Work Stability of Fault Control Instrumentation. In: Zaporozhets, A. (eds) Systems, Decision and Control in Energy III. Studies in Systems, Decision and Control, vol 399. Springer, Cham. https://doi.org/10.1007/978-3-030-87675-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87675-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87674-6

  • Online ISBN: 978-3-030-87675-3

  • eBook Packages: Intelligent Technologies and Robotics

Publish with us

Policies and ethics