Skip to main content

Solving a Multi-objective Vehicle Routing Problem with Synchronization Constraints

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2021)

Abstract

In this paper, we solve a multi-objective vehicle routing problem with synchronization constraints at the delivery location. Our work is motivated by the delivery of parcels and consumer goods in urban areas, where customers may await deliveries from more than one service provider on the same day. In addition to minimizing travel costs, we also consider a second objective to address customer preferences for a compact schedule at the delivery location, so that all deliveries to a customer happen within a non-predefined time interval. To determine the Pareto fronts, three metaheuristic methods based on large neighborhood search are developed. The results on small instances are compared with an \(\epsilon \)-constraint method using an exact solver. Results for large real-world instances are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderluh, A., Nolz, P.C., Hemmelmayr, V.C., Crainic, T.G.: Multi-objective optimization of a two-echelon vehicle routing problem with vehicle synchronization and ‘grey zone’ customers arising in urban logistics. Eur. J. Oper. Res. 289(3), 940–958 (2021). https://doi.org/10.1016/j.ejor.2019.07.049

    Article  MathSciNet  MATH  Google Scholar 

  2. Audet, C., Bigeon, J., Cartier, D., Digabel, S.L., Salomon, L.: Performance indicators in multiobjective optimization. Eur. J. Oper. Res. 292(2), 397–422 (2021). https://doi.org/10.1016/j.ejor.2020.11.016

    Article  MathSciNet  MATH  Google Scholar 

  3. Eskandarpour, M., Ouelhadj, D., Hatami, S., Juan, A.A., Khosravi, B.: Enhanced multi-directional local search for the bi-objective heterogeneous vehicle routing problem with multiple driving ranges. Eur. J. Oper. Res. 277(2), 479–491 (2019). https://doi.org/10.1016/j.ejor.2019.02.048

    Article  MathSciNet  MATH  Google Scholar 

  4. Haimes, Y.Y., Lasdon, L.S., Wismer, D.A.: On a bicriterion formation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern., 296–297 (1971). https://doi.org/10.1109/TSMC.1971.4308298

  5. Jozefowiez, N., Semet, F., Talbi, E.: Multi-objective vehicle routing problems. Eur. J. Oper. Res. 189(2), 293–309 (2008). https://doi.org/10.1016/j.ejor.2007.05.055

    Article  MathSciNet  MATH  Google Scholar 

  6. Lacomme, P., Prins, C., Sevaux, M.: A genetic algorithm for a bi-objective capacitated arc routing problem. Comput. Oper. Res. 33(12), 3473–3493 (2006). https://doi.org/10.1016/j.cor.2005.02.017. Part Special Issue: Recent Algorithmic Advances for Arc Routing Problems

    Article  MATH  Google Scholar 

  7. Laumanns, M., Thiele, L., Zitzler, E.: An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper. Res. 169(3), 932–942 (2006). https://doi.org/10.1016/j.ejor.2004.08.029

    Article  MathSciNet  MATH  Google Scholar 

  8. Lian, K., Milburn, A.B., Rardin, R.L.: An improved multi-directional local search algorithm for the multi-objective consistent vehicle routing problem. IIE Trans. 48(10), 975–992 (2016). https://doi.org/10.1080/0740817X.2016.1167288

    Article  Google Scholar 

  9. Liu, Q., Li, X., Liu, H., Guo, Z.: Multi-objective metaheuristics for discrete optimization problems: a review of the state-of-the-art. Appl. Soft Comput. 93, 106382 (2020). https://doi.org/10.1016/j.asoc.2020.106382

    Article  Google Scholar 

  10. Maltese, J., Ombuki-Berman, B.M., Engelbrecht, A.P.: A scalability study of many-objective optimization algorithms. IEEE Trans. Evol. Comput 22(1), 79–96 (2018). https://doi.org/10.1109/TEVC.2016.2639360

    Article  Google Scholar 

  11. Martí, R., Campos, V., Resende, M.G., Duarte, A.: Multiobjective GRASP with path relinking. Eur. J. Oper. Res. 240(1), 54–71 (2015). https://doi.org/10.1016/j.ejor.2014.06.042

    Article  MathSciNet  MATH  Google Scholar 

  12. Matl, P., Hartl, R.F., Vidal, T.: Leveraging single-objective heuristics to solve bi-objective problems: Heuristic box splitting and its application to vehicle routing. Networks 73(4), 382–400 (2019). https://doi.org/10.1002/net.21876

    Article  MathSciNet  Google Scholar 

  13. Ombuki, B.M., Ross, B., Hanshar, F.: Multi-objective genetic algorithms for vehicle routing problem with time windows. Appl. Intell. 24(1), 17–30 (2006). https://doi.org/10.1007/s10489-006-6926-z

    Article  Google Scholar 

  14. Sarasola, B., Doerner, K.F.: Adaptive large neighborhood search for the vehicle routing problem with synchronization constraints at the delivery location. Networks 75(1), 64–85 (2020). https://doi.org/10.1002/net.21905

    Article  MathSciNet  Google Scholar 

  15. Schott, J.R.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. Master’s thesis, Department of Aeronautics and Astronautics, MIT (1995)

    Google Scholar 

  16. Shao, S., Xu, G., Li, M., Huang, G.Q.: Synchronizing e-commerce city logistics with sliding time windows. Transp. Res. Part E Logist. Transp. Rev. 123, 17–28 (2019). https://doi.org/10.1016/j.tre.2019.01.007

    Article  Google Scholar 

  17. Tan, K.C., Cheong, C.Y., Goh, C.K.: Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation. Eur. J. Oper. Res. 177(2), 813–839 (2007). https://doi.org/10.1016/j.ejor.2005.12.029

    Article  MATH  Google Scholar 

  18. Tricoire, F.: Multi-directional local search. Comput. Oper. Res. 39(12), 3089–3101 (2012). https://doi.org/10.1016/j.cor.2012.03.010

    Article  MathSciNet  MATH  Google Scholar 

  19. Veldhuizen, D.A.V.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. Ph.D. thesis, Graduate School of Engineering, Air Force Institute of Technology (1999)

    Google Scholar 

  20. Xu, S.X., Shao, S., Qu, T., Chen, J., Huang, G.Q.: Auction-based city logistics synchronization. IISE Trans. 50(9), 837–851 (2018). https://doi.org/10.1080/24725854.2018.1450541

    Article  Google Scholar 

  21. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. thesis, ETH Zurich, Switzerland (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Briseida Sarasola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarasola, B., Doerner, K.F. (2021). Solving a Multi-objective Vehicle Routing Problem with Synchronization Constraints. In: Mes, M., Lalla-Ruiz, E., Voß, S. (eds) Computational Logistics. ICCL 2021. Lecture Notes in Computer Science(), vol 13004. Springer, Cham. https://doi.org/10.1007/978-3-030-87672-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87672-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87671-5

  • Online ISBN: 978-3-030-87672-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics