Skip to main content

Abstract

Fiber fuse, a thermal destruction phenomenon, which propagates toward optical sources and permanently damages optical fiber cores, connection points (connectors and splicing) as well as optical components sets the ultimate input optical power limits into optical fibers, thus determining the ultimate data capacity in optical fiber communication systems. This chapter describes basic properties of fiber fuse, followed by that of optical communication fibers, its detection and halting (blocking) methods, fiber fuse-based incidence as well as fiber fuse-tolerant fibers. Lastly, safety issues of optical communication systems from the viewpoint of IEC laser safety standardization are described.

Toshio Morioka is a chapter editor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Kashyap, K.J. Blow, Observation of catastrophic self-propelled self-focusing in optical fibres. Electron. Lett. 24(1), 47–49 (1988)

    Article  ADS  Google Scholar 

  2. D.P. Hand, P.S.J. Russell, Solitary thermal shock waves and optical damage in optical fibers, the fiber fuse. Opt. Lett. 13(9), 767–769 (1988)

    Google Scholar 

  3. S. Todoroki, Quantitative evaluation of fiber fuse initiation probability in typical single-mode fibers, in Optical Fiber Communication Conference. Optical Society of America, W2A.33 (2015)

    Google Scholar 

  4. S. Todoroki, Fiber fuse—light-induced continuous breakdown of silica glass optical fiber (NIMS Monographs, Springer Japan, Tokyo, 2014)

    Google Scholar 

  5. K.S. Abedin, M. Nakazawa, T. Miyazaki, Backreflected radiation due to a propagating fiber fuse. Opt. Express 17(8), 6525–6531 (2009)

    Article  ADS  Google Scholar 

  6. E.M. Dianov, I.A. Bufetov, A.A. Frolov, V.G. Plotnichenko, V.M. Mashinskii, M.F. Churbanov, G.E. Snopatin, Catastrophic destruction of optical fibres of various composition caused by laser radiation. Quantum Electron. 32(6), 476–478 (2002)

    Article  ADS  Google Scholar 

  7. A.M. Rocha, F. Domingues, M. Facão, P.S. André, Threshold power of fiber fuse effect for different types of optical fiber, in The 13th International Conference on Transparent Optical Networks (ICTON 2011), Stockholm, Sweden, pp. 1457–1549, Tu.P.13 (2011)

    Google Scholar 

  8. S. Todoroki, Threshold power reduction of fiber fuse propagation through a white tight buffered single-mode optical fiber. IEICE Electron. Express 8(23), 1978–1982 (2011)

    Article  Google Scholar 

  9. R. Kashyap, Self-propelled self-focusing damage in optical fibres, Lasers’87, in Proceedings of the 10th International Conference on Lasers and Applications, ed. by F.J. Duarte (STS Press, McLean, VA, 1988; Lake Tahoe, Nevada, USA, Dec 7–11, 1987), pp. 859–866

    Google Scholar 

  10. D.P. Hand, J.E. Townsend, P.S.J. Russell, Optical damage in fibres, the fibre fuse, in Digest of Conference on Lasers and Electro-Optics. Anaheim, US, Paper WJ1 (1988)

    Google Scholar 

  11. D.A. Dvoretskiy, V.F. Hopin, A.N. Gur’yanov, L.K. Denisov, L.D. Ishakova, I.A. Bufetov, Optical losses in silica based fibers within the temperature range from 300 to 1500 K, science and education. Electron. Sci.-Tech. J. 5 (2013) (in Russian)

    Google Scholar 

  12. H.R. Philipp, Silicon dioxide (SiO2) (glass), in Handbook of Optical Constants of Solids, ed. by E.D. Palik (Academic Press, New York, 1985), pp. 749–763

    Google Scholar 

  13. H.R. Philipp, Optical properties of non-crystalline Si, SiO, SiOx and SiO2. J. Phys. Chem. Solids 32(8), 1935–1945 (1971)

    Article  ADS  Google Scholar 

  14. T. Izawa, S. Sudo, Optical Fibers: Materials and Fabrication (KTK Scientific Publishers, Tokyo, 1987)

    Google Scholar 

  15. H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, Transmission characteristics and reliability of pure-silica-core single-mode fibers. J. Lightwave Technol. 4(8), 1144–1150 (1986)

    Article  ADS  Google Scholar 

  16. N. Akhmediev, P.S.J. Russell, M. Taki, J.M. Soto-Crespo, Heat dissipative solitons in optical fibers. Phys. Lett. A 372(9), 1531–1534 (2008)

    Google Scholar 

  17. E.M. Dianov, V.E. Fortov, I.A. Bufetov, V.P. Efremov, A.E. Rakitin, M.A. Melkumov, M.I. Kulish, A.A. Frolov, High-speed photography, spectra, and temperature of optical discharge in silica-based fibers. IEEE Photon. Technol. Lett. 18(6), 752–754 (2006)

    Article  ADS  Google Scholar 

  18. S. Todoroki, Quantitative evaluation of fiber fuse initiation with exposure to arc discharge provided by a fusion splicer. Sci. Rep. 6, 25366 (2016)

    Article  ADS  Google Scholar 

  19. S. Todoroki, Fiber fuse phenomenon. J. Plasma Fusion Res. 10, 505–508 (2018). ((in Japanese))

    Google Scholar 

  20. N. Nishimura, K. Seo, M. Shiino, R. Yuguchi, Study of high-power endurance characteristics in optical fiber link, in Technical Digest of Optical Amplifiers and Their Applications (TuC4), pp. 193–195 (2003)

    Google Scholar 

  21. K. Takenaga, S. Omori, R. Goto, S. Tanigawa, S. Matsuo, K. Himeno, Evaluation of high-power endurance of bend-insensitive fibers, in Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference (JWA11) (2008)

    Google Scholar 

  22. H. Takara, H. Masuda, H. Kanbara, Y. Abe, Y. Miyamoto, R. Nagase, T. Morioka, S. Matsuoka, M. Shimizu, K. Hagimoto, Evaluation of fiber fuse characteristics of hole-assisted fiber for high power optical transmission systems, in Proceedings of the 35th European Conference on Optical Communication (P1.12) (2009)

    Google Scholar 

  23. S. Todoroki, Fiber fuse propagation modes in typical single-mode fibers, in Optical Fiber Communication Conference (OSA Technical Digest Optical Society of America, 2013). Paper JW2A.11

    Google Scholar 

  24. S. Todoroki, Origin of periodic void formation during fiber fuse. Opt. Express 13(17), 6381–6389 (2005)

    Article  ADS  Google Scholar 

  25. I.A. Bufetov, A.A. Frolov, A.V. Shubin, M.E. Likhachev, S.V. Lavrishchev, E.M. Dianov, Propagation of an optical discharge through optical fibres upon interference of modes. Quantum Electron. 38(5), 441–444 (2008)

    Article  ADS  Google Scholar 

  26. D.D. Davis, S.C. Mettler, D.J. DiGiovani, Experimental data on the fiber fuse, 27th annual boulder damage symposium: laser-induced damage in optical materials, in SPIE Proceedings, eds. by H.E. Bennett, A.H. Guenther, M.R. Kozlowski, B.E. Newnam, M.J. Soileau, vol. 2714 (Boulder, CO, USA, 30 Oct. 1995), pp. 202–210

    Google Scholar 

  27. H. Zhang, P. Zhou, X. Wang, H. Xiao, X. Xu, Fiber fuse effect in high-power double clad fiber laser, in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (Paper WPD-4) (2013)

    Google Scholar 

  28. Y. Emori et al., Less than 4.7 dB noise figure broadband in-line EDFA with a Raman amplifier-1300 ps/nm DCF pumped by multi-channel WDM laser diodes, in Technical Digest OAA 98, Vail CO, July, 1998, paper PD3

    Google Scholar 

  29. R. Kashyap, Self-propelled self-focusing damage in optical fibers. Electron. Lett. 24(1) (1988)

    Google Scholar 

  30. D.P. Hand, P.S.J. Russell, Solitary thermal shockwaves and optical damage in optical fibers: the fiber fuse. Opt. Lett. 13, 767 (1988)

    Google Scholar 

  31. R.H. Stolen, Optical Fibre Communications, in eds. by S.E. Miller, A.G. Chynoweth (Academic Press, 1979)

    Google Scholar 

  32. K. Seo, N. Nishimura, M. Shiino, R. Yuguchi, H. Sasaki, Evaluation of high-power endurance in optical fiber links. Furukawa Rev. 24, 17–22 (2003)

    Google Scholar 

  33. K. Mukasa et al., New type of dispersion management transmission line for long-haul high-capacity transmission SubOptic’01 proceeding, T.4.2.4 (2001)

    Google Scholar 

  34. R.M. Atkins, P.G. Simpkins, A.D. Yablon, Track of a fiber fuse: a Rayleigh instability in optical waveguides. Opt. Lett. 28, 974–976 (2003)

    Google Scholar 

  35. K.S. Abedin, T. Morioka, Remote detection of fiber fuse propagation in optical fibers, in Optical Fiber Communication Conference, OThD5 (2009)

    Google Scholar 

  36. K.S. Abedin, M. Nakazawa, T. Miyazaki, Backreflected radiation due to a propagating fiber fuse. Opt. Exp. 17, 6525–6531 (2009)

    Article  Google Scholar 

  37. K.S. Abedin, T. Miyazaki, M. Nakazawa, Measurement of spectral broadening and Doppler shift on backreflections from a fiber fuse using heterodyne detection. Opt. Lett. 34, 3157–3159 (2009)

    Article  ADS  Google Scholar 

  38. K.S. Abedin, M. Nakazawa, Real time monitoring of a fiber fuse using an optical time-domain reflectometer. Opt. Express 18, 21315–21321 (2010); T. Kinoshita, N. Sato, M. Yamada, Detection and termination system for optical fiber fuse, in OptoElectronics and Communications Conference, WS4-6 (2013)

    Google Scholar 

  39. T. Kinoshita, N. Sato, M. Yamada, Detection and termination system for optical fiber fuse, in OptoElectronics and Communications Conference, WS4-6 (2013)

    Google Scholar 

  40. M. Yamada, O. Koyama, Radiation characteristics of peculiar luminescence which observed with optical fiber fuse phenomenon, in The 7th International Symposium on Ultrafast Photonic Technologies (ISUPT2015) and International Symposium on Extremely Advanced Transmission Technology (EXAT 2015), p. 7 (2015)

    Google Scholar 

  41. D.P. Hand, T.A. Birks, Single-mode tapers as ’fiber fuse’ damage circuit-breakers. Electron. Lett. 25(1), 33–34 (1989)

    Article  ADS  Google Scholar 

  42. A.M. Rocha, G. Fernandes, F. Domingues, M. Niehus, A.N. Pinto, M. Facao, P.S. Andre, Halting the fuse discharge propagation using optical fiber microwires. Opt. Express 20(19), 21083–21088 (2012)

    Article  ADS  Google Scholar 

  43. S. Yanagi, S. Asakawa, M. Kobayashi, Y. Shuto, R. Nagase, Fiber fuse terminator, in CLEO-PR 2003, vol. 1, p. 386 (2003)

    Google Scholar 

  44. K. Kurokawa, N. Hanzawa, Suppression of fiber fuse propagation and its break in compact fiber fuse terminator, OECC/PS 2013, WS4-5 (2013)

    Google Scholar 

  45. W. Ha, Y. Jeong, K. Oh, Fiber fuse effect in hollow optical fibers. Opt. Lett. 36(9), 1536–1538 (2011)

    Article  ADS  Google Scholar 

  46. E.M. Dianov, I.A. Bufetov, A.A. Frolov, Destruction of silica cladding by the fuse effect. Opt. Lett. 29(16), 1852–1854 (2004)

    Article  ADS  Google Scholar 

  47. D.P. Hand, P.S.J. Russell, Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse. Opt. Lett. 13(9), 767–769 (1988)

    Google Scholar 

  48. K. Kurokawa, N. Hanzawa, K. Tsujikawa, S. Tomita, Hole-size dependence of fiber fuse propagation in hole-assisted fiber (HAF), in Proceedings of the 17th Mirooptics Conference (H-30) (2011)

    Google Scholar 

  49. N. Hanzawa, K. Kurokawa, K. Tsujikawa, T. Matsui, K. Nakajima, S. Tomita, M. Tsubokawa, Suppression of fiber fuse propagation in hole assisted fiber and photonic crystal fiber. J. Lightwave Technol. 28(15), 2115–2120 (2010)

    Article  ADS  Google Scholar 

  50. K. Takenaga, S. Tanigawa, S. Matsuo, M. Fujimaki, H. Tsuchiya, Fiber fuse phenomenon in hole-assisted fibers, in ECOC 2008, P.1.14 (2008)

    Google Scholar 

  51. M. Yamada, O. Koyama, Y. Katsuyama, T. Shibuya, Heating and burning of optical fiber by light scattered from bubble train formed by optical fiber fuse, in OFC 2011, JThA1 (2011)

    Google Scholar 

  52. ITU-T Recommendation G.664, Edition 4.0 (2012)

    Google Scholar 

  53. IEC Technical Report IEC 61292-4, Edition 2.0 (2010)

    Google Scholar 

  54. M. Yamada, O. Koyama Y. Katuyama, T. Shibuya, Heating and burning of optical fiber by light scattered from bubble train formed by optical fiber fuse, in Proceedings of OFC/NFOFC2011, JThA (2011)

    Google Scholar 

  55. M. Yamada, A. Tomoe, T. Kinoshita, O. Koyama, Y. Katuyama, T. Shibuya, Heating and burning of optical fibers and cables by light scattered from bubble train formed by optical fiber fuse. IEICE Trans. Commun. E98-B(9), 2638–2641 (2012)

    Google Scholar 

  56. M. Yamada, A. Tomoe, H. Takara, Light scattering characteristics of a hole formed by a fiber fuse. Electron. Lett. 48(9), 519–520 (2012)

    Article  ADS  Google Scholar 

  57. E.M. Dianov, I.A. Bufetov, A.A. Frolov, Y.K. Chamorovsky, G.A. Ivanov, I.L. Vorobjev, Fiber fuse effect in microstructured fibers. IEEE Photon. Technol. Lett. 16(1), 180–181 (2004)

    Article  ADS  Google Scholar 

  58. K. Takenaga, S. Tanigawa, S. Matsuo, M. Fujimaki, H. Tsuchiya, Fiber fuse phenomenon in hole-assisted fibers, in Proceedings of the 34th European Conference on Optical Communication (P.1.14), pp. 27–28 (2008)

    Google Scholar 

  59. W. Ha, Y. Jeong, K. Oh, Fiber fuse in hollow optical fibers. Opt. Lett. 36(9), 1536–1538 (2011)

    Article  ADS  Google Scholar 

  60. IEC60825-1 Safety of laser products—part 1: equipment classification and requirements

    Google Scholar 

  61. IEC60825-2 safety of laser products—part 2: safety of optical fibre communication systems

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Morioka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morioka, T. et al. (2022). High-Power Issues. In: Nakazawa, M., Suzuki, M., Awaji, Y., Morioka, T. (eds) Space-Division Multiplexing in Optical Communication Systems. Springer Series in Optical Sciences, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-030-87619-7_7

Download citation

Publish with us

Policies and ethics