Skip to main content

A Microstructure Model from Conventional Diffusion MRI of Meningiomas: Impact of Noise and Error Minimization

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2021)

Abstract

In neuro–oncology microstructural imaging techniques, like diffusion–weighted MRI (DW–MRI), have been investigated to non–invasively derive patient–specific parameters that can be used for tumour characterization, treatment personalisation and monitoring, response assessment and prediction of radiotherapy outcomes. In particular, DW–MRI is opening up promising perspectives in radiotherapy applications as it is suitable for characterizing tissues at a microscopic scale (microstructure). However, as advanced MRI is rarely acquired in clinical settings, most studies propose metrics extracted from the conventional apparent diffusion coefficient (ADC), despite it being a sensitive but non–specific metric that encapsulates many features of the underlying tissue.

Starting from conventional ADC, a recently published computational framework showed its potential for tumour characterization at the microscopic scale by means of synthetic cell substrates (which mimic the cellular packing of a tumour tissue) and a simulation tool. The aim of this study was (i) to evaluate the effectiveness of an error correction procedure; (ii) to provide a method that accounts for noise in the computational framework; (iii) to obtain a quantitative description of tumour microstructure from DW–MRI images of meningiomas that helps differentiating patients according to their histological sub–type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aja-Fernández, S., Vegas-Sánchez-Ferrero, G., Tristán-Vega, A.: Noise estimation in parallel MRI: GRAPPA and SENSE. Magn. Reson. Imaging 32(3), 281–290 2014). https://doi.org/10.1016/j.mri.2013.12.001

  2. Bedard, P.L., Hansen, A.R., Ratain, M.J., Siu, L.L.: Tumour heterogeneity in the clinic (2013). https://doi.org/10.1038/nature12627

  3. Bontempi, P., et al.: Multicomponent T2 relaxometry reveals early myelin white matter changes induced by proton radiation treatment. Magn. Reson. Med. mrm.28913 (2021). https://doi.org/10.1002/MRM.28913

  4. Buizza, G., et al.: Improving the characterization of meningioma microstructure in proton therapy from conventional apparent diffusion coefficient measurements using Monte Carlo simulations of diffusion MRI. Med. Phys. 48(3), 1250–1261 (2021). https://doi.org/10.1002/mp.14689

  5. Cook, P.a., Bai, Y., Seunarine, K.K., Hall, M.G., Parker, G.J., Alexander, D.C.: Camino: open-source diffusion-MRI reconstruction and processing. In: 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine vol. 14, p. 2759 (2006)

    Google Scholar 

  6. Dagogo-Jack, I., Shaw, A.T.: Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15(2), 81–94 (2018). https://doi.org/10.1038/nrclinonc.2017.166

  7. Galbán, C.J., Hoff, B.A., Chenevert, T.L., Ross, B.D.: Diffusion MRI in early cancer therapeutic response assessment (2017). https://doi.org/10.1002/nbm.3458

  8. Gurney-champion, O.J., et al.: Quantitative imaging for radiotherapy purposes. Radiother. Oncol. 146, 66–75 (2020). https://doi.org/10.1016/j.radonc.2020.01.026

  9. Gyori, N.G., Palombo, M., Clark, C.A., Zhang, H., Alexander, D.C.: Training Data Distribution Significantly Impacts the Estimation of Tissue Microstructure with Machine Learning. bioRxiv p. 2021.04.13.439659 (2021). https://doi.org/10.1101/2021.04.13.439659

  10. Hall, M.G., Alexander, D.C.: Convergence and parameter choice for monte-carlo simulations of diffusion MRI. IEEE Trans. Med. Imaging 28(9), 1354–1364 (2009). https://doi.org/10.1109/TMI.2009.2015756

  11. Le Bihan, D.: What can we see with IVIM MRI? NeuroImage 187, 56–67 (2019). https://doi.org/10.1016/j.neuroimage.2017.12.062

  12. Leibfarth, S., Winter, R.M., Lyng, H., Zips, D., Thorwarth, D.: Potentials and challenges of diffusion-weighted magnetic resonance imaging in radiotherapy (2018). https://doi.org/10.1016/j.ctro.2018.09.002

  13. Marzi, S., et al.: Early radiation-induced changes evaluated by intravoxel incoherent motion in the major salivary glands. J. Magn. Reson. Imaging 41(4), 974–982 (2015). https://doi.org/10.1002/jmri.24626

  14. Nilsson, M., Englund, E., Szczepankiewicz, F., van Westen, D., Sundgren, P.C.: Imaging brain tumour microstructure (2018). https://doi.org/10.1016/j.neuroimage.2018.04.075

  15. Noij, D.P., et al.: Predictive value of diffusion-weighted imaging without and with including contrast-enhanced magnetic resonance imaging in image analysis of head and neck squamous cell carcinoma. Eur. J. Radiol. 84(1), 108–116 (2015). https://doi.org/10.1016/j.ejrad.2014.10.015

  16. Panagiotaki, E., et al.: Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 74(7), 1902–1912 (2014). https://doi.org/10.1158/0008-5472.CAN-13-2511

  17. Patterson, D.M., Padhani, A.R., Collins, D.J.: Technology Insight: Water diffusion MRI - A potential new biomarker of response to cancer therapy (2008). https://doi.org/10.1038/ncponc1073

  18. Reynaud, O.: Time-dependent diffusion MRI in Cancer: tissue modeling and applications. Front. Phys. 5(November), 1–16 (2017). https://doi.org/10.3389/fphy.2017.00058

  19. Surov, A., et al.: Histogram analysis parameters apparent diffusion coefficient for distinguishing high and low-grade meningiomas: a multicenter study. Transl. Oncol. 11(5), 1074–1079 (2018). https://doi.org/10.1016/j.tranon.2018.06.010

  20. Surov, A., Meyer, H.J., Wienke, A.: Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget 8(35), 59492–59499 (2017). https://doi.org/10.18632/oncotarget.17752

  21. Tang, L., Zhou, X.J.: Diffusion MRI of cancer: from low to high b-values. J. Magn. Reson. Imaging 49(1), 23–40 (2019). https://doi.org/10.1002/jmri.26293

  22. Thoeny, H.C., Ross, B.D.: Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J. Magn. Reson. Imaging 16, 2–16 (2010). https://doi.org/10.1002/jmri.22167

  23. Tommasino, F., Nahum, A., Cella, L.: Increasing the power of tumour control and normal tissue complication probability modelling in radiotherapy: recent trends and current issues. Transl. Cancer Res. 6(5), S807–S821 (2017). https://doi.org/10.21037/tcr.2017.06.03

Download references

Acknowledgments

Partially supported by Associazione Italiana per la Ricerca sul Cancro (AIRC), Investigator Grant-IG 2020, project number 24946. MP is supported by UKRI Future Leaders Fellowship MR/T020296/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letizia Morelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morelli, L. et al. (2021). A Microstructure Model from Conventional Diffusion MRI of Meningiomas: Impact of Noise and Error Minimization. In: Cetin-Karayumak, S., et al. Computational Diffusion MRI. CDMRI 2021. Lecture Notes in Computer Science(), vol 13006. Springer, Cham. https://doi.org/10.1007/978-3-030-87615-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87615-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87614-2

  • Online ISBN: 978-3-030-87615-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics