Skip to main content

Bioprospecting New-Generation Biocontrol Strategies: A Viable Solution for Attaining Agricultural Security and Food Safety

  • Chapter
  • First Online:
Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management

Abstract

The present agroecological system traces back a long history of indiscriminate use of chemical fertilizers and pesticides, which stands as a major loophole in leaving the soil unhealthy, promoting environmental degradation, reduction in crop quality, mismanaged insect-pest and disease population and acerbating health issues. This chapter highlights the present need and relevance of “new-generation biocontrol agents” for restoring back the productive nature of soil, hence marking the path of agricultural sustainability and food security. It further adds to the quality of soil and effective management, safeguards mechanism and provides security provisions for all the aspects related to ecological concerns, so that food safety and quality, respectively, can be assured to the end users. In addition, today’s era demands for alternative effective strategies which combat with the issues regarding biological security and safety, where incorporating the physiochemical and biological agents does not pose any type of harm or hazard to the biotic and abiotic resources. So, it can be concluded that a channelization process is needed to divert from “chemical cultivation procedures” to eco-friendly “microbial consortiums”, which ensures value-added quality produce (free from toxic residues) to finally revert agricultural processes towards attainment of food security and safety at a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balanza V, Mendoza JE, Bielza P (2019) Variation in susceptibility and selection for resistance to imidacloprid and thiamethoxam in Mediterranean populations of Orius laevigatus. Entomol Exp Appl 167:626–635

    Article  CAS  Google Scholar 

  • Bestete LR, Torres JB, Henry CS (2019) Yellow mutant of the neotropical green lacewing Chrysoperla externa (Neuroptera, Chrysopidae): trait inheritance and predator performance. Entomol Exp Appl 167:646–654

    Article  Google Scholar 

  • Cock MJ, van Lenteren JC, Brodeur J, Barratt BIP, Bigler F et al (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? BioControl 55:199–218

    Article  Google Scholar 

  • Convention on Biological Diversity (CBD) (1992) Convention on biological diversity. UNEP, Nairobi, Kenya. (https://www.cbd.int/convention/)

    Google Scholar 

  • DeBach P (1958) Selective breeding to improve adaptations of parasitic insects. In: Proceedings of the 10th international congress of entomology (Montreal, 1956), vol 4, pp 759–768

    Google Scholar 

  • DeBach P, Rosen D (1991) Biological control by natural enemies, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400

    Article  Google Scholar 

  • Glandorf DC, Verheggen P, Jansen T, Jorritsma JW, Smit E, Leefang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PA, Van Loon LC (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appl Environ Microbiol 67:3371–3378

    Article  CAS  Google Scholar 

  • Griffith TA, Paterson ID, Owen CA, Coetzee JA (2019) Thermal plasticity and microevolution enhance establishment success and persistence of a water hyacinth biological control agent. Entomol Exp Appl 167:616–625

    Article  Google Scholar 

  • He P, Chintamanani S, Chen Z, Zhu L, Kunkel BN, Alfano JR, Tang X, Zhou JM (2004) Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J 37:589–602

    Article  CAS  Google Scholar 

  • Heimpel G, Mills N (2017) Biological control: ecology and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Howarth FG (1991) Environmental impacts of classical biological control. Annu Rev Entomol 36:485–509

    Article  Google Scholar 

  • IPPC (2005) Guidelines for the export, shipment, import and release of biological control agents and other beneficial organisms. In: International Standards for Phytosanitary Measures No. 3. UN-FAO, Rome

    Google Scholar 

  • Kruitwagen A, Beukeboom LW, Wertheim B (2018) Optimization of native biocontrol agents, with parasitoids of the invasive pest Drosophila suzukii as an example. Evol Appl 11:1473–1497

    Article  Google Scholar 

  • Leung K, van de Zande L, Beukeboom LW (2019) Life history traits of the whiting polyploid line of the non-CSD parasitoid Nasonia vitripennis. Entomol Exp Appl 167:655–669

    Article  Google Scholar 

  • Lirakis M, Magalhaes S (2019) Does experimental evolution produce better biological control agents? Entomol Exp Appl 167:584–597

    Article  Google Scholar 

  • Lommen STE, de Jong PW, Pannebakker BA (2017) It is time to bridge the gap between exploring and exploiting: prospects for utilizing intraspecific genetic variation to optimise arthropods for augmentative pest control—a review. Entomol Exp Appl 162:108–123

    Article  Google Scholar 

  • Mally CW (1916) On the selection and breeding of desirable strains of beneficial insects. S Afr J Sci 13:191–195

    Google Scholar 

  • Milgroom MG, Cortesi P (2004) Biological control of chestnut blight with hypovirulence: a critical analysis. Annu Rev Phytopathol 42:311–338

    Article  CAS  Google Scholar 

  • Odum EP (1953) Fundamentals of ecology. W. B. Saunders, Philadelphia/London

    Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Paspati A, Ferguson K, Verhulst E, Urbaneja A, Gonzalez-Cabrera J, Pannebakker B (2019) Effect of mass rearing on the genetic diversity of the predatory mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Entomol Exp Appl 167:670–681

    Article  CAS  Google Scholar 

  • Paterson ID, Coetzee JA, Weyl P, Griffiths TC, Voogt N, Hill MP (2019) Cryptic species of a water hyacinth biological control agent revealed in South Africa: host specificity, impact, and thermal tolerance. Entomol Exp Appl 167:682–691

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  Google Scholar 

  • Seko T, Miura K (2009) Effects of artificial selection for reduced flight ability on survival rate and fecundity of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Appl Entomol Zool 44:587–594

    Article  Google Scholar 

  • Stahl JM, Gariepy TD, Beukeboom LW, Haye T (2019) A molecular tool to identify Anastatus parasitoids of the brown marmorated stink bug. Entomol Exp Appl 167:692–700

    Article  CAS  Google Scholar 

  • Szucs M, Vercken E, Bitume EV, Hufbauer RA (2019) Review of the implications of rapid eco-evolutionary processes for biological control. Entomol Exp Appl 167:598–615

    Article  Google Scholar 

  • Thakur N (2017) Increased soil-microbial-eco-physiological interactions and microbial food safety in tomato under organic strategies. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore

    Google Scholar 

  • Thakur N (2021) An insight through root-endophytic-mutualistic association in improving crop productivity and sustainability. In: Shrivastava N, Mahajan S, Varma A (eds) Symbiotic soil microorganisms. Soil biology, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-030-51916-2_2

    Chapter  Google Scholar 

  • US Congress Office of Technology Assessment (1995) Biologically-based technologies for pest control. OTA-ENV-636. US Government Printing Office, Washington, DC

    Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture: review and interpretation. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57:1–20

    Article  Google Scholar 

  • Wajnberg E (2004) Measuring genetic variation in natural enemies used for biological control: why and how. In: Ehler LE, Sforza R, Mateille T (eds) Genetics, evolution and biological control. CAB International, Wallingford, pp 19–37

    Chapter  Google Scholar 

  • Woodbury PB, DiTommaso A, Thies J, Ryan M, Losey J (2017) Effects of transgenic crops on the environment. In: Coll M, Wajnberg E (eds) Environmental pest management: challenges for agronomists, ecologists, economists and policymakers. Wiley-Blackwell, Hoboken, NJ, pp 131–150

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, N. (2022). Bioprospecting New-Generation Biocontrol Strategies: A Viable Solution for Attaining Agricultural Security and Food Safety. In: Kumar, A. (eds) Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87512-1_8

Download citation

Publish with us

Policies and ethics