Skip to main content

Local Existence of Solutions to the Euler–Poisson System, Including Densities Without Compact Support

  • Conference paper
  • First Online:
Current Trends in Analysis, its Applications and Computation

Part of the book series: Trends in Mathematics ((RESPERSP))

  • 425 Accesses

Abstract

Local existence and uniqueness for a class of solutions for the Euler Poisson system is shown, whose properties can be described as follows. Their density ρ either falls off at infinity or has compact support. Their mass and the energy functional is finite and they also include the static spherical solutions for \(\gamma =\frac {6}{5}\). The result is achieved by using weighted Sobolev spaces of fractional order and a new non-linear estimate that allows to estimate the physical density by the regularised non linear matter variable.

U. B. gratefully acknowledges support from Grant MTM2016-75465 by MINECO, Spain and UCM-GR17-920894.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Brauer, L. Karp, Local existence of solutions to the Euler–Poisson system, including densities without compact support. J. Differ. Equ. 264(2), 755–785 (2018). https://doi.org/10.1016/j.jde.2017.09.024

    Article  MathSciNet  MATH  Google Scholar 

  2. U. Brauer, L. Karp, Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler–Poisson system, accepted for publication. J. d’Analyse Math. (2019)

    Google Scholar 

  3. M. Bézard, Existence locale de solutions pour les équations d’Euler-Poisson. Jpn. J. Indust. Appl. Math. 10(3), 431–450 (1993). http://dx.doi.org/10.1007/BF03167283

    Article  MATH  Google Scholar 

  4. M. Cantor, Spaces of functions with asymptotic conditions on \({{\mathbb R}^{n}}\). Ind. Univ. Math. J. 24(9), 897–902 (1975)

    Google Scholar 

  5. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover Publications, Inc., 1939)

    MATH  Google Scholar 

  6. P. Gamblin, Solution régulière à temps petit pour l’équation d’Euler-Poisson. Comm. Partial Differ. Equ. 18(5-6), 731–745 (1993). http://dx.doi.org/10.1080/03605309308820948

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique. Princeton Univ. Bull. 49–52 (1902)

    Google Scholar 

  8. J. Jang, Nonlinear instability in gravitational Euler-Poisson systems for \(\gamma =\frac 65\). Arch. Ration. Mech. Anal. 188(2), 265–307 (2008). http://dx.doi.org/10.1007/s00205-007-0086-0

  9. L. Lichtenstein, Über einige Eigenschaften der Gleichgewichtsfiguren rotierender Flüssigkeiten, deren Teilchen einander nach dem Newtonsch’schen Gesetz anziehen., Mathematische Zeitschrift 28, 635–640 (1928)

    Google Scholar 

  10. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables (Springer, New York, 1984)

    Book  MATH  Google Scholar 

  11. T. Makino, On a local existence theorem for the evolution equation of Gaseous stars, in Patterns and Waves, eds. by T. Nishida, M. Mimura, H. Fujii (North-Holland, Amsterdam, 1986)

    Google Scholar 

  12. R.M. McOwen, The behavior of weighted Sobolev spaces. Commun. Pure Appl. Math. 32, 783–795 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. T.A. Oliynyk, The Newtonian limit for perfect fluids. Comm. Math. Phys. 276(1), 131–188 (2007). http://dx.doi.org/10.1007/s00220-007-0334-z

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Rein, Non-linear stability of gaseous stars. Arch. Ration. Mech. Anal. 168(2), 115–130 (2003). http://dx.doi.org/10.1007/s00205-003-0260-y

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Runst, W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations (Walter de Gruyter, 1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Brauer .

Editor information

Editors and Affiliations

Appendix A Useful Propositions

Appendix A Useful Propositions

The following Proposition was proved by Kateb in the H s spaces.

Proposition A.1

Let u  H s,δ ∩ L , 1 < β, \( 0<s<\beta +\frac {1}{2}\) , and \(\delta \in \mathbb {R}\) , then

$$\displaystyle \begin{aligned} \||u|{}^\beta\|{}_{H_{s,\delta}}\leq C(\|u\|{}_{L^\infty}) \|u\|{}_{H_{s,\delta}}. \end{aligned} $$
(A.1)

Proposition A.2 (Sobolev Embedding)

  1. (i)

    If \(\frac {3}{2}<s\) and \(\beta \leq \delta +\frac {3}{2}\) , then \( \|u\|{ }_{L^\infty _\beta }\leq C \|u\|{ }_{H_{s,\delta }}. \)

  2. (ii)

    Let m be a nonnegative integer, \(m+\frac {3}{2}<s\) , and \(\beta \leq \delta +\frac {3}{2}\) , then

    $$\displaystyle \begin{aligned} \|u\|{}_{C^m_\beta}\leq C \|u\|{}_{H_{s,\delta}}. \end{aligned}$$

Proposition A.3 (Nonlinear Estimate of Power of Functions)

Suppose that w  H s,δ, 0 ≤ w and β is a real number greater or equal 2. Then

  1. 1.

    If β is an integer, \(\frac {3}{2}<s\) and \(\frac {2}{\beta -1}-\frac {3}{2}\leq \delta \) , then

    $$\displaystyle \begin{aligned} \|w^\beta\|{}_{H_{s-1,\delta+2}}\leq C_n \left(\|w\|{}_{H_{s,\delta}}\right)^\beta. \end{aligned} $$
    (A.2)
  2. 2.

    If \(\beta \not \in {{\mathbb N}}\), \(\frac {5}{2}<s<\beta -[\beta ]+\frac {5}{2}\) and \(\frac {2}{[\beta ]-1}-\frac {3}{2}\leq \delta \) , then

    $$\displaystyle \begin{aligned} \|w^\beta\|{}_{H_{s-1,\delta+2}}\leq C_n \left(\|w\|{}_{H_{s,\delta}}\right)^{[\beta]}. \end{aligned} $$
    (A.3)

Theorem A.4 (Well Posedness of First Order Hyperbolic Symmetric Systems in H s,δ)

Let \(\frac {5}{2}<s\), \(-\frac {3}{2}\leq \delta \) , U 0 ∈ H s,δ , and F(t, ⋅) ∈ C([0, T 0], H s,δ) for some positive T 0 . Then there exists a positive T  T 0 and a unique solution U to the system

$$\displaystyle \begin{aligned} \begin{cases} & \displaystyle{\partial_t U + A^a(U)\partial_a U + B(U)U = F(t,x)}\\ & U(0,x)=U_0(x) \end{cases}, \end{aligned} $$
(A.4)

such that

$$\displaystyle \begin{aligned} U\in C([0,T],H_{s,\delta})\cap C^1([0,T],H_{s-1,\delta+1}). \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brauer, U., Karp, L. (2022). Local Existence of Solutions to the Euler–Poisson System, Including Densities Without Compact Support. In: Cerejeiras, P., Reissig, M., Sabadini, I., Toft, J. (eds) Current Trends in Analysis, its Applications and Computation. Trends in Mathematics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-87502-2_54

Download citation

Publish with us

Policies and ethics