Skip to main content

Controlling Packet Drops to Improve Freshness of Information

  • Conference paper
  • First Online:
Network Games, Control and Optimization (NETGCOOP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1354))

Included in the following conference series:

Abstract

Many systems require frequent and regular updates of certain information. These updates have to be transferred regularly from the source(s) to a common destination. We consider scenarios in which an old packet (entire information unit) becomes completely obsolete, in the presence of a new packet. We consider transmission channels with unit storage capacity; upon arrival of a new packet, if another packet is being transmitted then one of the packets is lost. We consider the control problem that consists of deciding which packet to discard so as to maximise the average age of information (AAoI). We derive drop policies that optimize the AAoI. We show that the state independent (static) policies like dropping always the old packets or dropping always the new packets are optimal in many scenarios, among an appropriate set of stationary Markov policies.

E. Altman—This work was financed by the ANR “Maestro 5G”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout we refer an entire information unit as a packet, that could stand for message or a post or a frame, which needs to be updated frequently. Here are few examples: messages describing weather forecast, or cricket score, or the sensed events related to the entire area in a sensor network, or the information from stock exchanges etc.

  2. 2.

    Limit exists almost surely in all our scenarios, as will be shown in respective proofs.

  3. 3.

    The adjacent cycles (e.g., intervals between \(R_{k}\), \(R_{k+1}\) and \(R_{k+1}\), \(R_{k+2}\)) are not independent, because of \(G_{k} = T_{k}\), however the alternate ones are. Concatenate odd and even cycles to obtain two separate renewal process, observe that \(R_k \rightarrow \infty \) as \(k \rightarrow \infty \) and apply (Renewal Reward Theroem) RRT to both the processes to obtain:

    $$\begin{aligned} {\bar{a}}= & {} \lim _{k \rightarrow \infty } \frac{ \sum _{l \le k} \int _{R_{l-1}}^{R_l} G(t) dt }{R_k } \\= & {} \lim _{k \rightarrow \infty } \left( \frac{ \sum _{2l \le k} \int _{R_{2l-1}}^{R_{2l}} G(t) dt }{ \sum _{{2l \le k} R_{2l}-R_{2l-1} }} \frac{ \sum _{{2l \le k} R_{2l}-R_{2l-1} } }{R_k} + \frac{ \sum _{2l+1 \le k} \int _{R_{2l}}^{R_{2l+1}} G(t) dt }{ \sum _{{2l \le k} R_{2l+1}-R_{2l} }} \frac{ \sum _{{2l \le k} R_{2l+1}-R_{2l} } }{R_k} \right) \\= & {} \frac{E \left[ \int _{R_{1}}^{R_2} G (s) ds \right] }{ E[ R_2 - R_{1}]} \frac{1}{2} + \frac{E \left[ \int _{R_{2}}^{R_3} G (s) ds \right] }{ E[ R_3 - R_{1}]} \frac{1}{2} = \frac{E \left[ \int _{R_{1}}^{R_2} G (s) ds \right] }{ E[ R_2 - R_{1}]} \text { a.s., as the two processes are identical}. \end{aligned}$$

    For renewal process with even cycles, the time intervals between two successful packet receptions \(\{(R_{2k} - R_{2k-1}) \}_k\) form the renewal periods and the time integral of the costs in (1) for each of even renewal periods, \(\left\{ \int _{R_{2k-1}}^{R_{2k}} G (s) ds \right\} _k\), form the rewards.

  4. 4.

    At first glance \(\boldsymbol{\varGamma }\) may appear like busy period of \(M/G/\infty \) queue, but it is not true.

  5. 5.

    The source can easily have access to \(\{G_k\}\), as it can easily keep track of successful/unsuccessful prior transmissions.

  6. 6.

    One can not apply the usual renewal theory based analysis, as the process is (the odd/even cycles are also) Markovian and can not be modelled as a Renewal process, with IID renewal cycles.

  7. 7.

    It is not difficult to establish the continuity of the relevant functions as \(\theta \rightarrow \infty \) and it is not difficult to show that the limit equals that with DOP scheme.

  8. 8.

    because \(\xi \) is exponential,

    $$1- \lambda E\left[ T e^{-\lambda T } \right] = \lambda ( E[ \xi ] - E[ T ; T\le \xi ] ) = \lambda (E[ \xi ; T> \xi ] + E[ \xi - T ; T\le \xi ]) > 0. $$

    .

References

  1. Joo, C., Eryilmaz, A.: Wireless scheduling for information freshness and synchrony: drift-based design and heavy-traffic analysis. In: Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt) (2017)

    Google Scholar 

  2. Huang, L., Modiano, E.: Optimizing age-of-information in a multi-class queueing system. In: Information Theory (ISIT), 2015 IEEE International Symposium on IEEE (2015)

    Google Scholar 

  3. Kaul, S., Yates, R., Gruteser, M.: Real-time status: how often should one update? In: INFOCOM, 2012 Proceedings IEEE. IEEE (2012)

    Google Scholar 

  4. Talak, R., Karaman, S., Modiano, E.: Distributed scheduling algorithms for optimizing information freshness in wireless networks. arXiv preprint arXiv:1803.06469 (2018)

  5. Altman, E., El-Azouzi, R., Ros, D., Tuffin, B.: Loss strategies for competing TCP/IP connections. In: Mitrou, N., Kontovasilis, K., Rouskas, G.N., Iliadis, I., Merakos, L. (eds.) NETWORKING 2004. LNCS, vol. 3042, pp. 926–937. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24693-0_76

    Chapter  Google Scholar 

  6. Altman, E.: Parallel TCP sockets: simple model, throughput and validation. In: IEEE Infocom (2006)

    Google Scholar 

  7. He, Q., Yuan, D., Ephremides, A.: Optimizing freshness of information: on minimum age link scheduling in wireless systems. In: Proceedings of the 14th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt) (2016)

    Google Scholar 

  8. Yates, R.D., Kaul, S.K.: Status updates over unreliable multiaccess channels, pp. 331–335. In: Information Theory (ISIT), 2017 IEEE International Symposium on IEEE (2017)

    Google Scholar 

  9. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer Science & Business Media, Heidelberg (2012)

    Google Scholar 

  10. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  11. Menache, I., Shimkin, N.: Fixed-rate equilibrium in wireless collision channels. In: Chahed, T., Tuffin, B. (eds.) NET-COOP 2007. LNCS, vol. 4465, pp. 23–32. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72709-5_3

    Chapter  Google Scholar 

  12. Kavitha, V., Altman, E., Saha, I.: Controlling packet drops to improve freshness of information. arXiv preprint arXiv:1807.09325 (2018)

  13. Wang, B., Feng, S., Yang, J.: When to preempt? Age of information minimization under link capacity constraint. J. Commun. Netw. 21(3), 220–232 (2019)

    Article  Google Scholar 

  14. Yates, R.D., Kaul, S.K.: The age of information: real-time status updating by multiple sources. IEEE Trans. Inf. Theory 65(3), 1807–1827 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veeraruna Kavitha .

Editor information

Editors and Affiliations

Appendices

Appendix A: Proofs

Proof of Lemma 1: By conditioning on \(\xi _{k,1}\), \(T_{k, 0}\):

$$\begin{aligned} E[\boldsymbol{\varGamma }_k]= & {} E \left[ \boldsymbol{\varGamma }_k \ \boldsymbol{;} \ \xi _{k,1}> T_{k, 0 } \right] + E \left[ \boldsymbol{\varGamma }_k \ \boldsymbol{;} \ \xi _{k,1} \le T_{k, 0} \right] \\= & {} E \left[ T_{k, 0} \ \boldsymbol{;} \ \xi _{k,1}> T_{k, 0 } \right] + E \left[ \xi _{k, 1} + \tilde{\boldsymbol{\varGamma }} \ \boldsymbol{;} \ \xi _{k,1} \le T_{k, 0} \right] \\= & {} E \left[ T_{k, 0} ; \xi _{k,1} > T_{k, 0 } + \xi _{k, 1} \ \boldsymbol{;} \ \xi _{k,1} \le T_{k, 0} \right] \ + E\left[ \tilde{\boldsymbol{\varGamma }} \ \boldsymbol{;} \ \xi _{k,1} \le T_{k, 0} \right] , \end{aligned}$$

where is an IID copy of \(\boldsymbol{\varGamma }_k\), which is independent of \(T_{k, 0}\) and \(\xi _{k, 1}\). By independence, and thus by further conditioning on T we have the following:

$$\begin{aligned} E(\boldsymbol{\varGamma }) = \frac{ E \left[ T ; \xi > T + \xi \ \boldsymbol{;} \ \xi \le T \right] }{ P( T \le \xi ) } = \frac{ E[Te^{-\lambda T} ] + ( 1- E[e^{-\lambda T} ] ) / \lambda - E[T e^{-\lambda T} ] }{ P( T \le \xi ) } = \frac{ 1- \gamma }{\lambda \gamma }. \end{aligned}$$
(25)

Using exactly similar logic:

Using (25),

$$\begin{aligned} E[\boldsymbol{\varGamma }^2]= & {} \frac{E[\min \lbrace T_0 , \xi _1 \rbrace ^2] + 2E[\boldsymbol{\varGamma }]E[ \xi _{k, 1} \ \boldsymbol{;} \ T_{k, 0} > \xi _{k, 1} ] }{\gamma } \nonumber \\= & {} \frac{ 2 (1- \gamma ) }{\lambda ^2 \gamma } - \frac{2 E[T e^{-\lambda T}]}{ \lambda \gamma } \nonumber +\frac{ 2 E[\boldsymbol{\varGamma }] }{\gamma } \left( \frac{1-\gamma }{\lambda } - E[Te^{-\lambda T} ] \right) \nonumber \\= & {} \frac{ 2 (1- \gamma ) }{\lambda ^2 \gamma } - \frac{2 E[T e^{-\lambda T}]}{ \lambda \gamma ^2 } + \frac{2 (1-\gamma )^2}{\lambda ^2 \gamma ^2} \ = \frac{ 2 (1- \gamma ) }{\lambda ^2 \gamma ^2 } - \frac{2 E[T e^{-\lambda T}]}{ \lambda \gamma ^2 } . \end{aligned}$$
(26)

Using (25) and (26), the first two moments of the renewal cycle are:

$$\begin{aligned} E[R_c]= & {} \frac{1}{\lambda } + \frac{1-\gamma }{\lambda \gamma } = \frac{1}{\lambda \gamma } \text { and } \\ E[R_c^2 ]= & {} E \left[ \xi _{k, 0}^2 + 2 \xi _{k, 0} \boldsymbol{\varGamma }_k + \boldsymbol{\varGamma }_k^2 \right] \nonumber { \ = \ } \frac{2}{\lambda ^2 \gamma ^2} - \frac{2 E[T e^{-\lambda T}]}{ \lambda \gamma ^2 }. \end{aligned}$$

   \(\blacksquare \)

Proof of Theorem 1: As a first step, one can easily observe that the coefficients of the lower bound function \(f_o\) depend upon \(\theta \) only via the stationary distribution \(\pi _\theta \), in particular only via \(\pi _\theta (0)\), i.e., \(f_o (\theta ) = f_o (\pi _\theta (0) )\). Further the function \(\theta \mapsto \pi _\theta (0)\) is ONTO (see (15)) and hence one can equivalently optimize \(f_o\) using \(\pi :=\pi _\theta (0)\):

$$ f_o (\theta ) = f_o (\pi ) = \frac{ d_o \bigg ( (b_n - b_o )\pi + b_o \bigg ) + 0.5( c_n -c_o) \pi + 0.5 c_o }{(d_n -d_o)\pi + d_o }. $$

The first derivative for the lower bound function is:

$$\begin{aligned} f_o^\prime (\pi )= & {} \frac{ 0.5 (c_n d_o - c_od_n) +d_o ( b_n d_o - b_o d_n ) }{ (\pi (d_n-d_o)+d_o ) ^2} . \end{aligned}$$
(27)

From (28) of Appendix B:

$$\begin{aligned} c_n d_o - c_o d_n= & {} \frac{ E[T^2]}{ \lambda \gamma } + \left( \frac{1}{\lambda } + E[T] \right) \left( E[T e^{-\lambda T}] - \frac{ (1- \gamma ) }{\lambda } \right) \frac{2}{\lambda \gamma ^2}. \end{aligned}$$

Thus the numerator of the derivative (27) is proportional to,

$$\begin{aligned} c_n d_o - c_o d_n + 2 d_o (b_n d_o - b_o d_n)= & {} \frac{ E[T^2]}{ \lambda \gamma } + \left( \frac{1}{\lambda } + E[T] \right) E[T e^{-\lambda T}] \left( \frac{2}{\lambda \gamma ^2} - 2 \frac{1}{\lambda \gamma ^2 }\right) \\&- \frac{ 1 }{\lambda \gamma } \left( \left( \frac{1}{\lambda } + E[T] \right) \frac{2(1-\gamma )}{\lambda \gamma } - E[T] \frac{2}{\lambda \gamma } \right) \\= & {} \frac{ E[T^2]}{ \lambda \gamma } + \frac{2}{\lambda ^2 \gamma } (E[T] - E[\boldsymbol{\varGamma }] ) > 0, \text { when }d_n \ge d_o. \end{aligned}$$

Thus the derivative \(f_o' (\theta ) > 0\) for all \(\theta \), hence the lower bound \(f_o\) is increasing with \(\pi \), and thus the unique minimizer of \(f_o\) is at \(\pi ^* = 0\). This implies the DOP scheme (see (15)) is optimal for AAoI \({\bar{a}}(\centerdot )\).    \(\blacksquare \)

Proof of Theorem 2: As before it suffices to show that the numerator of derivative of \(f_n\) (with respect to \(\pi \)) is negative. Recall the following:

$$\begin{aligned} c_n d_o - c_o d_n= & {} \frac{ E[T^2]}{ \lambda \gamma } + \left( \frac{1}{\lambda } + E[T] \right) \left( E[T e^{-\lambda T}] - \frac{ (1- \gamma ) }{\lambda } \right) \frac{2}{\lambda \gamma ^2} , \\ d_o= & {} \frac{1}{\lambda \gamma } , \ \ b_o = \frac{E[ T e^{-\lambda T}]}{\gamma }, \ \ d_n = \frac{1}{\lambda } + E[T] \end{aligned}$$

The numerator of derivative of \(f_n\) is proportional to,

$$\begin{aligned}&c_n d_o - c_o d_n + 2 d_n (b_n d_o - b_o d_n) \\&\qquad \quad = \frac{ E[T^2]}{ \lambda \gamma } + \left( \frac{1}{\lambda } + E[T] \right) E[T e^{-\lambda T}] \left( \frac{2}{\lambda \gamma ^2} - \frac{ 2}{\gamma } \left( \frac{1}{\lambda } + E[T] \right) \right) \\&\qquad \quad - \frac{ 2 }{\lambda \gamma } \left( \frac{1}{\lambda } + E[T] \right) \left( \frac{ 1-\gamma }{\lambda \gamma } - E[T] \right) \\&\qquad \quad = \frac{ E[T^2]}{ \lambda \gamma } - \frac{ 2}{\lambda \gamma } \left( \frac{1}{\lambda } + E[T] \right) \left( 1- \lambda E[T e^{-\lambda T}] \right) (d_o - d_n ). \end{aligned}$$

Thus the theorem follows from hypothesis.    \(\blacksquare \)

Appendix B: Some Useful Terms Used in the Proofs

The estimate of the term \(c_n d_o - d_n c_o\):

$$\begin{aligned}&c_n d_o - d_n c_o = \left( \frac{2}{\lambda ^2 } + E[T^2] + \frac{2 E[T] }{\lambda } \right) \left( \frac{1}{\lambda } + \frac{1-\gamma }{\lambda \gamma } \right) \nonumber \\&- \left( \frac{1}{\lambda } + E[T] \right) \left( \frac{2}{\lambda ^2 } + \frac{ 2 (1- \gamma ) }{\lambda ^2 \gamma } - \frac{2 E[T e^{-\lambda T}]}{ \lambda \gamma ^2} + 2 \frac{ (1- \gamma )^2 }{\lambda ^2 \gamma ^2 } +\frac{2 (1- \gamma ) }{\lambda ^2 \gamma } \right) \nonumber \\ \nonumber \\&=\left( \frac{2}{\lambda ^2 } + E[T^2] + \frac{2 E[T] }{\lambda } \right) \left( \frac{1}{\lambda \gamma } \right) \nonumber \\&- \left( \frac{1}{\lambda } + E[T] \right) \left( \frac{2}{\lambda ^2 \gamma } \nonumber - \frac{2 E[T e^{-\lambda T}]}{ \lambda \gamma ^2} + 2 \frac{ (1- \gamma )^2 }{\lambda ^2 \gamma ^2 } +\frac{2 (1- \gamma ) }{\lambda ^2 \gamma } \right) \\ \nonumber \\&= E[T^2]\left( \frac{1}{\lambda \gamma } \right) \nonumber - \left( \frac{1}{\lambda } + E[T] \right) \left( - \frac{2 E[T e^{-\lambda T}]}{ \lambda \gamma ^2} + 2 \frac{ (1- \gamma )^2 }{\lambda ^2 \gamma ^2 } +\frac{2 (1- \gamma ) }{\lambda ^2 \gamma } \right) \\ \nonumber \\&= \frac{1}{\gamma } \left( \frac{ E[T^2]}{ \lambda } + \left( \frac{1}{\lambda } + E[T] \right) \left( \frac{2 E[T e^{-\lambda T}]}{ \lambda \gamma } \right) \right) \nonumber \\&- \frac{1}{\gamma } \left( \left( \frac{1}{\lambda } + E[T] \right) \left( \frac{2 (1- \gamma ) }{\lambda ^2 \gamma } \left( (1- \gamma )+ \gamma \right) \right) \right) \nonumber \\&= \frac{1}{\gamma } \left( \frac{ E[T^2]}{ \lambda } + \left( \frac{1}{\lambda } + E[T] \right) \left( \frac{2 E[T e^{-\lambda T}]}{ \lambda \gamma } \right) - \left( \frac{1}{\lambda } + E[T] \right) \frac{2 (1- \gamma ) }{\lambda ^2 \gamma } \right) \nonumber \\ \nonumber \\&= \frac{ E[T^2]}{ \lambda \gamma } + \left( \frac{1}{\lambda } + E[T] \right) \left( E[T e^{-\lambda T}] - \frac{ (1- \gamma ) }{\lambda } \right) \frac{2}{\lambda \gamma ^2} . \end{aligned}$$
(28)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kavitha, V., Altman, E. (2021). Controlling Packet Drops to Improve Freshness of Information. In: Lasaulce, S., Mertikopoulos, P., Orda, A. (eds) Network Games, Control and Optimization. NETGCOOP 2021. Communications in Computer and Information Science, vol 1354. Springer, Cham. https://doi.org/10.1007/978-3-030-87473-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87473-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87472-8

  • Online ISBN: 978-3-030-87473-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics