Skip to main content

Markov Processes with Jumps on Manifolds and Lie Groups

  • Conference paper
  • First Online:
Geometry and Invariance in Stochastic Dynamics (RTISD19 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 378))

  • 495 Accesses

Abstract

We review some developments concerning Markov and Feller processes with jumps in geometric settings. These include stochastic differential equations in Markus canonical form, the Courrège theorem on Lie groups, and invariant Markov processes on manifolds under both transitive and more general Lie group actions.

We dedicate this article to the memory of Hiroshi Kunita (1937–2019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our assumptions on \((E, {\mathcal E})\) ensure that such a version exists.

  2. 2.

    In fact he obtained the representation on a larger domain, but we will not need that here.

  3. 3.

    We say that \(\mu \) is a Lévy kernel if \(\mu (\sigma , \cdot )\) is a Lévy measure for all \(\sigma \in G\).

  4. 4.

    K is independent of the choice of point chosen, up to isomorphism.

References

  1. Albeverio, S., De Vecchi, F.C., Morando, P., Ugolini, S.: Random transformations and invariance of semimartingales on Lie groups, Random Operators and Stochastic Equations (2021)

    Google Scholar 

  2. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  3. Applebaum, D.: Infinitely divisible central probability measures on compact Lie groups - regularity, semigroups and transition kernels. Annals Prob. 39, 2474–96 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Applebaum, D.: Pseudo differential operators and Markov semigroups on compact Lie groups. J. Math Anal. App. 384, 331–48 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Applebaum, D.: Compound Poisson processes and Lévy processes in groups and symmetric spaces. J. Theor. Probab. 13, 383–425 (2000)

    MATH  Google Scholar 

  6. Applebaum, D.: Probability on Compact Lie groups. Springer, Berlin (2014)

    Google Scholar 

  7. Applebaum, D.: Operator-valued stochastic differential equations arising from unitary group representations. J. Theor. Probab. 14, 61–76 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Applebaum, D., Estrade, A.: Isotropic Lévy processes on Riemannian manifolds. Ann. Prob 28, 188–84 (2000)

    MATH  Google Scholar 

  9. Applebaum, D., Kunita, H.: Lévy flows on manifolds and Lévy processes on Lie groups. J. Math Kyoto Univ. 33, 1103–23 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Applebaum, D., Tang, F.: Stochastic flows of diffeomorphisms driven by infinite-dimensional semimartingales with jumps. Stoch. Proc. Appl. 92, 219–36 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Applebaum, D., Le Ngan, T.: The positive maximum principle on Lie groups. J. London Math. Soc. 101, 136–55 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Applebaum, D., Le Ngan, T.: The positive maximum principle on symmetric spaces. Positivity 24, 1519–1533 (2020). https://doi.org/10.1007/s11117-020-00746-w

  13. Bony, J.M., Courrège, P., Prioret, P.: Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro- différentiels du second-ordre donnant lieu au principe du maximum. Ann. Inst. Fourier, Grenoble 18, 369–521 (1968)

    Google Scholar 

  14. Böttcher, B., Schilling, R., Wang, J.: Lévy Matters III, Lévy Type Processes, Construction, Approximation and Sample Path Properties. Lecture Notes in Mathematics, vol. 2099. Springer International Publishing, Switzerland (2013)

    Google Scholar 

  15. Cohen, S.: Géometrie différentielle stochastique avec sauts I. Stoch. Stoch. Rep. 56, 179–203 (1996)

    MATH  Google Scholar 

  16. Courrège, P.: Sur la forme intégro-différentielle des opérateurs de \(C_{k}^{\infty }\) dans \(C\) satifaisant au principe du maximum. Sém. Théorie du Potential exposé 2, 38(1965/66)

    Google Scholar 

  17. Courrège, P.: Sur la forme intégro-différentielle du générateur infinitésimal d’un semi–group de Feller sur une variété. Séminaire Brelot-Choquet–Deny. Théorie du Potentiel, tome 10(1), 1–48 (1965–66) exp. no. 3

    Google Scholar 

  18. Tom Dieck, T.: Transformation groups. de Gruyter, Berlin (1987)

    Google Scholar 

  19. Elworthy, K.D.: Stochastic Differential Equations on Manifolds. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  20. Elworthy, K.D.: Geometric aspects of diffusions on manifolds in École d’Été de Probabilitès de Saint-Flour XV-XVII, 1985–87, 277–425. Lecture Notes in Math, vol. 1362. Springer, Berlin (1988)

    Google Scholar 

  21. Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterisation and Convergence. Wiley, New York (1986)

    Google Scholar 

  22. Feinsilver, P.: Processes with independent increments on a Lie group. Trans. Amer. Math. Soc. 242, 73–121 (1978)

    MathSciNet  MATH  Google Scholar 

  23. Galmarino, A.R.: Representation of an isotropic diffusion as a skew product. Z. Wahrscheinlichkeitstheor. Verw. Geb. 1, 359–378 (1963)

    MathSciNet  MATH  Google Scholar 

  24. Gangolli, R.: Isotropic infinitely divisible measures on symmetric spaces. Acta Math. 111, 213–246 (1964)

    MathSciNet  MATH  Google Scholar 

  25. Heyer, H.: Infinitely divisible probability measures on compact groups. In: Lectures on Operator Algebras. Lecture Notes in Mathematics, vol. 247, pp. 55-249. Springer, Berlin (1972)

    Google Scholar 

  26. Hoh, W.: Pseudo Differential Operators Generating Markov Processes. Habilitationschrift Universität Bielefeld (1998). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.4876&rep=rep1&type=pdf

  27. Hsu, E.P.: Stochastic Analysis on Manifolds. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  28. Hunt, G.A.: Semigroups of measures on Lie groups. Trans. Amer. Math. Soc. 81, 264–93 (1956)

    MathSciNet  MATH  Google Scholar 

  29. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North Holland–Kodansha (1989)

    Google Scholar 

  30. Itô, K.: Stochastic differential equations on differentiable manifolds. Nagoya Math. J. 1, 35–47 (1950)

    MathSciNet  MATH  Google Scholar 

  31. Kunita, H.: Stochastic Flows and Jump Diffusions. Springer, Berlin (2019)

    Google Scholar 

  32. Liao, M.: Lévy Processes in Lie Groups. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  33. Liao, M.: Invariant Markov Processes Under Lie Group Actions. Springer, Berlin (2018)

    Google Scholar 

  34. Liao, M., Wang, L.: Lévy-Khinchin formula and existence of densities for convolution semigroups on symmetric spaces. Potential Anal. 27, 133–150 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Ruzhansky, M., Turunen, V.: Pseudo-differential Operators and Symmetries: Background Analysis and Advanced Topics. Birkhäuser, Basel (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank the referee for some helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Applebaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Applebaum, D., Liao, M. (2021). Markov Processes with Jumps on Manifolds and Lie Groups. In: Ugolini, S., Fuhrman, M., Mastrogiacomo, E., Morando, P., Rüdiger, B. (eds) Geometry and Invariance in Stochastic Dynamics. RTISD19 2019. Springer Proceedings in Mathematics & Statistics, vol 378. Springer, Cham. https://doi.org/10.1007/978-3-030-87432-2_2

Download citation

Publish with us

Policies and ethics