Skip to main content

Instructional Design

  • Chapter
  • First Online:
Physics Education

Part of the book series: Challenges in Physics Education ((CPE))

  • 1115 Accesses

Abstract

We present in this chapter an approach in which the design of physics lessons orients towards a framework of the surface and deep structure of physics teaching. In planning lessons and evaluating the quality teaching, we consider the learning goals as a decisive criterion. These goals are understood not only in terms of content in the sense of physics, but also in terms of research methodology in physics, epistemology and learning theory. According to empirically proven quality criteria for (physics) lessons, lesson design should be oriented towards learning processes (including learning theory and physics content) and cognitive activation, as well as being student-oriented and characterised by clear classroom management (clarity of rules and avoidance of disturbances). The practice of high-quality lessons should follow the overall goal of a conducive learning environment. These characteristics are part of the deep structure of a quality lesson, and they are described through theory-based analysis and reference to quality teaching. Teachers should follow the deep structure as closely as possible, but they are free to construct the surface structure according to the available equipment of the respective school. By surface structure, we mean the choice and organisation of teaching methods, media and social forms. The basic theoretical requirements are illustrated with lesson examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebli H (1961) Grundformen des Lehrens. Ein Beitrag zur psychologischen Grundlegung der Unterrichtsmethode [Basic Forms of Teaching. A contribution to the psychological foundation of the teaching method]. Klett, Stuttgart

    Google Scholar 

  • Arnold KH, Koch-Priewe B (2011) The merging and the future of the classical German traditions in general didactics: a comprehensive framework for lesson planning. In: Hudson B, Meyer MA (eds) Beyond fragmentation: didactics, learning and teaching in Europe. Verlag Barbara Budrich, Opladen, pp 252–264

    Chapter  Google Scholar 

  • Atkin JM, Karplus R (1962) Discovery or invention? Sci Teach 29(5):45–51. Retrieved from http://www.jstor.org/stable/24146536

  • Banner J, Cannon H (2008) The elements of teaching. Yale University Press, New Haven

    Google Scholar 

  • Barrows HS (1996) Problem-based learning in medicine and beyond: a brief overview. New Dir Teach Learn 1996(68):3–12. https://doi.org/10.1002/tl.37219966804

    Article  Google Scholar 

  • Börlin J (2012) Das Experiment als Lerngelegenheit. Vom interkulturellen Vergleich des Physikunterrichts zu Merkmalen seiner Qualität [The experiment as a learning opportunity. From intercultural comparison of physics teaching to characteristics of its quality], vol 132. Logos, Berlin

    Google Scholar 

  • Bybee RW, Taylor JA, Gardner A, Van Scotter P, Carlson Powell J, Westbrook A, Landes N (2006) The BSCS 5E instructional model: origins and effectiveness. Retrieved from Colorado Springs, CO

    Google Scholar 

  • Bybee RW (2009) The BSCS 5E instructional model and 21st century skills. Retrieved from http://sites.nationalacademies.org

  • Deboer GE (2006) Historical perspectives on inquiry teaching in schools. In: Flick LB, Lederman NG (eds) Scientific inquiry and nature of science: implications for teaching, learning, and teacher education. Springer, Dordrecht, pp 17–35

    Google Scholar 

  • Duijzer C, Van den Heuvel-Panhuizen M, Veldhuis M, Doorman M, Leseman P (2019) Embodied learning environments for graphing motion: a systematic literature review. Educ Psychol Rev 31(3):597–629. https://doi.org/10.1007/s10648-019-09471-7

    Article  Google Scholar 

  • Elsässer T (2000) Choreografien unterrichtlichen Lernens als Konzeptionsansatz für eine Berufsfelddidaktik [Choreographies of instructional learning as a conceptual approach for vocational field didactics]. Schweizerisches Institut für Berufspädagogik, Zollikofen

    Google Scholar 

  • Fischer HE, Reyer T, Wirz T, Bos W, Höllrich N (2002) Unterrichtsgestaltung und lernerfolg im physikunterricht [Lesson design and learning success in physics lessons]. Zeitschrift Für Pädagogik, Beiheft 45:124–138

    Google Scholar 

  • Fischer HE, Klemm K, Leutner D, Sumfleth E, Tiemann R, Wirth J (2005) Framework for empirical research on science teaching and learning. J Sci Teach Educ 16(4):309–349. Retrieved from Retrieved from http://www.jstor.org/stable/43156373

  • Forbes CT, Neumann K, Schiepe-Tiska A (2020) Patterns of inquiry-based science instruction and student science achievement in PISA 2015. Int J Sci Educ 42(5):783–806. https://doi.org/10.1080/09500693.2020.1730017

    Article  Google Scholar 

  • Gagné RM (1985) Conditions of learning and theory of instruction. Holt, Rinchart & Winston, New York

    Google Scholar 

  • Gagné RM, Briggs LJ (1979) Principles of instructional design, 2nd edn. Holt, Rinchart & Winston, New York

    Google Scholar 

  • Geller C, Neumann K, Fischer HE (2014) A deeper look inside teaching skripts: learning process orientations in Finland, Germany and Switzerland. In: Fischer HE, Labudde P, Neumann K, Viiri J (eds) Quality of instruction in physics: comparing Finland, Germany and Switzerland. Waxmann, Münster, pp 81–92

    Google Scholar 

  • Gilbert JK (2010) Preface. In: Philsips LM, Norris SP, Macnab JS (eds) Visualization in mathematics, reading and science education. Springer, Dordrecht, The Netherlands, pp v

    Google Scholar 

  • Hattie JAC (2008) Visible learning: a synthesis of over 800 meta-analysis relating to achievement. Routledge, London and New York

    Google Scholar 

  • Helmke A (2012) Unterrichtsqualität und Lehrerprofessionalität: Diagnose, Evaluation und Verbesserung des Unterrichts [Teaching quality and teacher professionalism: diagnosis, evaluation and improvement of teaching], 4th edn. Klett-Kallmeyer, Seelze

    Google Scholar 

  • Helmke A, Helmke T (2014) Wie wirksam ist gute Klassenführung? [How effective is good classroom management?]. Lernende Schule 65:9–12

    Google Scholar 

  • Hmelo-Silver CE (2004) Problem-based learning: what and how do students learn? Educ Psychol Rev 16(3):235–266. https://doi.org/10.1023/B:EDPR.0000034022.16470.f3

    Article  Google Scholar 

  • Karplus R, Butts DP (1977) Science teaching and the development of reasoning. J Res Sci Teach 14(2):169–175. https://doi.org/10.1002/tea.3660140212

    Article  Google Scholar 

  • Klieme E, Hartig J, Rauch D (2008) The concepts of competence in educational contexts. In: Leutner D, Klieme E, Hartig J (eds) Assessment of competencies in educational contexts. State of the art and future prospects. Hogrefe, Göttingen, pp 3–22

    Google Scholar 

  • Klieme E, Rakoczy K (2008) Empirische Unterrichtsforschung und Fachdidaktik: outcome-orientierte Messung und Prozessqualität des Unterrichts [Empirical classroom research and subject didactics: outcome-oriented measurement and process quality of teaching]. Zeitschrift Für Pädagogik 54(2):222–227

    Google Scholar 

  • Krabbe H, Zander S, Fischer HE (2015) Lernprozessorientierte Gestaltung von Physikunterricht. Materialien zur Lehrerfortbildung [Learning process-oriented design of physics lessons. Materials for teacher training]. Waxmann, Münster

    Google Scholar 

  • Kunter M, Trautwein U (2013) Psychologie des Unterrichts [psychology of teaching]. Schöningh, Paderborn

    Google Scholar 

  • Lipowisky F, Drollinger-Vetter B, Klieme E, Pauli C, Reusser K (2018) Generische und fachdidaktische Dimensionen von Unterrichtsqualität - Zwei Seiten einer Medaille? [Generic and subject didactic dimensions of quality teaching - Two sides of the same coin?]. In: Martens M, Rabenstein K, Bräu K, Fetzer M, Gresch H, Hardy I, Schelle C (eds) Konstruktionen von Fachlichkeit [Constructions of subject specificity]. Klinkhardt, Bad Heilbrunn , pp 183–202

    Google Scholar 

  • Marek EA, Laubach TA, Pedersen J (2003) Preservice elementary school teachers’ understandings of theory based science education. J Sci Teacher Educ 14(3):147–159. https://doi.org/10.1023/A:1025918216347

    Article  Google Scholar 

  • Marzano R (2007) The art and science of teaching. Association for Supervision and Curriculum Development, Alexandria, VA

    Google Scholar 

  • McRobbie CJ, Roth W-M, Lucas KB (1997) Multiple learning environments in the physics classroom. Int J Educ Res 27(4):333–342. https://doi.org/10.1016/S0883-0355(97)90015-X

    Article  Google Scholar 

  • Meyer H (2002) Unterrichtsmethoden [teaching methods]. In: Kiper H, Meyer H, Topsch W (eds) Einführung in die Schulpädagogik [Introduction to school pedagogy]. Cornelsen Scriptor, Berlin, pp 109–121

    Google Scholar 

  • Meyer H (2008) Was ist guter Unterricht? [what is quality teaching?]. Cornelsen Scriptor, Berlin

    Google Scholar 

  • Meyer H, Bülter H (2004) Was ist ein lernförderliches Klima? [what is a climate that supports learning?]. Pädagogik 11:31–36

    Google Scholar 

  • Meyer H (2016) Unterrichtsmethoden 1. Theorieband [Teaching methods 1. Theory volume], 17 edn, vol 1. Cornelsen Scriptor, Berlin

    Google Scholar 

  • Mulder M (2014) Conceptions of professional competence. In: Billett S, Harteis C, Gruber H (eds) International handbook of research in professional and practice-based learning. Springer, Dordrecht, pp 107–137

    Google Scholar 

  • Nieswandt M, McEneaney EH, Affolter R (2020) A framework for exploring small group learning in high school science classrooms: the triple problem solving space. Instr Sci 48(3):243–290. https://doi.org/10.1007/s11251-020-09510-9

    Article  Google Scholar 

  • OECD (2001) Knowledge and skills for life: First results from PISA 2000. OECD, Paris

    Book  Google Scholar 

  • Ohle A (2010) Primary school teachers’ content knowledge in physics and its impact on teaching and stundents’ achievement, vol 110. Logos, Berlin

    Google Scholar 

  • Oser F, Patry JL (1990) Choreographien unterrichtlichen Lernens: Basismodelle des Unterrichts [Choreographies of instructional learning: basis models of teaching]. Pädagogisches Institut der Universität Freiburg, Freiburg

    Google Scholar 

  • Oser F, Baeriswyl FJ (2001) Choreographies of teaching: bridging instruction to learning. In: Richardson V (ed) Handbook on research on teaching, 4th edn. American Educational Research Association (AERA), Washington, pp 1031–1065

    Google Scholar 

  • Pauli C, Reusser K (2003) Unterrichtsskripts im schweizerischen und im deutschen Mathematikunterricht [Lesson scripts in Swiss and German mathematics lessons]. Unterrichtswissenschaft 31(3):238–272

    Google Scholar 

  • Petry B, Mouton H, Reigeluth CM (1987) A lesson based on the Gagné-Briggs theory of instruction. In: Reigeluth CM (ed) Instructional theories in action: lessons illustrating selected theories and models. Erlbaum Associates, Hillsdale, pp 11–44

    Google Scholar 

  • Piaget J (1976) Piaget’s Theory. In: Inhelder B, Chipman HH, Zwingmann C (eds) Piaget and his school: a reader in developmental psychology. Springer, Berlin, Heidelberg, pp 11–23

    Chapter  Google Scholar 

  • Praetorius A-K, Klieme E, Herbert B, Pinger P (2018) Generic dimensions of teaching quality: the German framework of three basic dimensions. Int J Math Educ 50(3):407–426. https://doi.org/10.1007/s11858-018-0918-4

    Article  Google Scholar 

  • Prenzel M, Seidel T, Kobarg M (2012) Science teaching and learning: an international comparative perspective. In: Fraser BJ, Tobin K, McRobbie CJ (eds) Second international handbook of science education. Springer, Dordrecht, pp 667–678

    Chapter  Google Scholar 

  • Prenzel M, Artelt C, Baumert JWB, Hammann M, Klieme E, Pekrun R (2007) PISA 06 - Die Ergebnisse der dritten internationalen Vergleichsstudie. [The results of the third international comparative study]. Waxmann, Münster

    Google Scholar 

  • Reigeluth CM (ed) (1983) Instructional-design theories and models: an overview of their current status. Erlbaum Associates, Hillsdale

    Google Scholar 

  • Renkl A (2014) Toward an instructionally oriented theory of example-based learning. Cogn Sci 38(1):1–37. https://doi.org/10.1111/cogs.12086

    Article  ADS  Google Scholar 

  • Reusser K (2005) Problemorientiertes Lernen – Tiefenstruktur, Gestaltungsformen, Wirkung. [Problem-based learning-deep structure, forms of design, effect] Beiträge zur Lehrerbildung 23(2):159–182

    Google Scholar 

  • Roberts DA, Bybee RW (2014) Scientific literacy, science literacy, and science education. In: Lederman NG, Abell SK (eds) Handbook of research on science education, vol II. Routledge, New York, NY, pp 545–558

    Google Scholar 

  • Roth H (1983) Pädagogische Psychologie des Lehrens und Lernens [Educational psychology of teaching and learning], 16th edn. Schroedel Schulbuchverlag GmbH, Hannover

    Google Scholar 

  • Sadler TD, Dawson V (2012) Socio-scientific issues in science education: contexts for the promotion of key learning outcomes. In: Fraser BJ, Tobin K, McRobbie CJ (eds) Second international handbook of science education. Springer, Dordrecht, pp 799–809

    Chapter  Google Scholar 

  • Schiepe-Tiska A, Rönnebeck S, Schöps K, Neumann K, Schmidtner S, Ilka Parchmann I, Prenzel M (2016) Naturwissenschaftliche Kompetenz in PISA 2015 – Ergebnisse des internationalen Vergleichs mit einem modifizierten Testansatz [Scientific literacy in PISA 2015 - Results of the international comparison with a modified testing approach]. In: Reiss K, Sälzer C, Schiepe-Tiska A, Klieme E, Köller O (eds) PISA 2015. Eine Studie zwischen Kontinuität und Innovation [A study between continuity and innovation]. Waxmann, Münster, New York, pp 45–98

    Google Scholar 

  • Schmidt-Weigand F, Hänze M, Wodzinski R (2009) Complex problem solving and worked examples. Zeitschrift Für Pädagogische Psychologie 23(2):129–138. https://doi.org/10.1024/1010-0652.23.2.129

    Article  Google Scholar 

  • Seidel T, Shavelson RJ (2007) Teaching effectiveness research in the past decade: the role of theory and research design in disentangling meta-analysis results. Rev Educ Res 77(4):454–499. https://doi.org/10.3102/0034654307310317

  • Seidel T, Prenzel M, Rimmele R, Dalehefte IM, Herweg C, Kobarg M, Schwindt K (2006) Blicke auf den Physikunterricht. Ergebnisse der IPN Videostudie [Views on physics teaching: Results of the IPN video study]. Zeitschrift für Pädagogik 52(6):799–821

    Google Scholar 

  • Seidel T (2003) Lehr-Lernskripts im Unterricht. Freiräume und Einschränkungen für kognitive und motivationale Lernprozesse - eine Videostudie im Physikunterricht. [Teaching-learning scripts in the classroom, free spaces and constraints for cognitive and motivational learning processes: A video study in physics lessons]. Waxmann, Münster

    Google Scholar 

  • Shakhman L, Barak M (2019) The physics problem-solving taxonomy (PPST): development and application for evaluating student learning. Eurasia J Math Sci Technol Educ 15. Retrieved from https://doi.org/10.29333/ejmste/109266

  • Struyf A, De Loof H, Boeve-de Pauw J, Van Petegem P (2019) Students’ engagement in different STEM learning environments: integrated STEM education as promising practice? Int J Sci Educ 41(10):1387–1407. https://doi.org/10.1080/09500693.2019.1607983

    Article  Google Scholar 

  • Taylor JA, Van Scotter P, Coulson D (2007) Bridging research on learning and student achievement: the role of instructional materials. Sci Educ 16(2):44–50. Retrieved from https://files.eric.ed.gov/fulltext/EJ783420.pdf

  • Tiruneh DT, De Cock M, Elen J (2018) Designing learning environments for critical thinking: examining effective instructional approaches. Int J Sci Math Educ 16(6):1065–1089. https://doi.org/10.1007/s10763-017-9829-z

    Article  Google Scholar 

  • Treagust DF, Tsui C-Y (2014) General instructional methods and strategies. In: Lederman NG, Abell SK (eds) Handbook of research on science education, vol II. Routledge, New York, pp 303–303

    Google Scholar 

  • Trendel G, Wackermann R, Fischer HE (2008) Lernprozessorientierte Fortbildung von Physiklehrern [Learning process oriented further education of physics teachers]. Zeitschrift Für Pädagogik 54:322–340

    Google Scholar 

  • van Merriënboer JJG (2013) Perspectives on problem solving and instruction. Comput Educ 64:153–160. https://doi.org/10.1016/j.compedu.2012.11.025

    Article  Google Scholar 

  • Venville G, Rennie LJ, Wallace J (2012) Curriculum integration: challenging the assumption of school science as powerful knowledge. In: Fraser BJ, Tobin K, McRobbie CJ (eds) Second international handbook of science education. Springer, Dordrecht, pp 737–749

    Chapter  Google Scholar 

  • Weinert FE (2001) Concept of competence: a conceptual clarification. In: Rychen DS, Salganik LH (eds) Defining and selecting key competencies. Hogrefe & Huber Publishers, Cambridge, MA, pp 45–65

    Google Scholar 

  • Wubbels T, Brekelmans M, den Brok P, Wijsman L, Mainhard T, van Tartwijk J (2014) Teacher–student relationships and classroom management. In: Emmer E, Sabornie E (eds) Handbook of classroom management, 2nd edn. Routledge, New York, pp 373–396

    Google Scholar 

  • Zander S (2016) Lehrerfortbildung zu Basismodellen und Zusammenhänge zum Fachwissen [In-service teacher training on basis models and connections to content knowledge]. Logos, Berlin

    Google Scholar 

  • Zeidler DL (2014) Socioscientific issues as a curriculum emphasis: theory, research and Practice. In: Lederman NG, Abell SK (eds) Handbook of research on science education, vol II. Routledge, New York, pp 697–726

    Google Scholar 

Download references

Acknowledgements

We would like to thank David Treagust (Curtin University) and Anita Stender (Universität Duisburg-Essen) for carefully and critically reviewing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Krabbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krabbe, H., Fischer, H.E. (2021). Instructional Design. In: Fischer, H.E., Girwidz, R. (eds) Physics Education. Challenges in Physics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-87391-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87391-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87390-5

  • Online ISBN: 978-3-030-87391-2

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics