Skip to main content

Edge-Based Blur Kernel Estimation Using Sparse Representation and Self-similarity

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12889))

Included in the following conference series:

Abstract

Blind image deconvolution is the problem of recovering the latent image from the only observed blurry image when the blur kernel is unknown. In this paper, we propose an edge-based blur kernel estimation method for blind motion deconvolution. In our previous work, we incorporate both sparse representation and self-similarity of image patches as priors into our blind deconvolution model to regularize the recovery of the latent image. Since almost any natural image has properties of sparsity and multi-scale self-similarity, we construct a sparsity regularizer and a cross-scale non-local regularizer based on our patch priors. It has been observed that our regularizers often favor sharp images over blurry ones only for image patches of the salient edges and thus we define an edge mask to locate salient edges that we want to apply our regularizers. Experimental results on both simulated and real blurry images demonstrate that our method outperforms existing state-of-the-art blind deblurring methods even for handling of very large blurs, thanks to the use of the edge mask.

Scientific Research Common Program of Beijing Municipal Commission of Education (KM201910005029) and Beijing Natural Science Foundation (4212014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Trans. Graph. (TOG) 25(3), 787–794 (2006)

    Article  Google Scholar 

  2. Jia, J.: Single image motion deblurring using transparency. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, Minnesota, USA, pp. 1–8. IEEE (2007)

    Google Scholar 

  3. Joshi, N., Szeliski, R., Kriegman, D.: PSF estimation using sharp edge prediction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, pp. 1–8. IEEE (2008)

    Google Scholar 

  4. Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. (TOG) 28(5), 89–97 (2009)

    Article  Google Scholar 

  5. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_12

    Chapter  Google Scholar 

  6. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, pp. 1964–1971. IEEE (2009)

    Google Scholar 

  7. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, pp. 2657–2664. IEEE (2011)

    Google Scholar 

  8. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. (TOG) 27(3), 15–19 (2008)

    Article  Google Scholar 

  9. Perrone, D., Favaro, P.: Total variation blind deconvolution: the devil is in the details. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, pp. 2909–2916. IEEE (2014)

    Google Scholar 

  10. Perrone, D., Favaro, P.: A clearer picture of total variation blind deconvolution. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1041–1055 (2016)

    Article  Google Scholar 

  11. Levin, A., Fergus, R., Durand, F.E.D., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. (TOG) 26(3), 70-es (2007)

    Google Scholar 

  12. Pan, Z., et al.: Super-resolution based on compressive sensing and structural self-similarity for remote sensing images. IEEE Trans. Geosci. Remote Sens. 51(9), 4864–4876 (2013)

    Article  Google Scholar 

  13. Wang, M., Yu, J., Sun, W.: Group-based hyperspectral image denoising using low rank representation. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 1623–1627 (2015)

    Google Scholar 

  14. Jia, C., Evans, B.L.: Patch-based image deconvolution via joint modeling of sparse priors. In: IEEE International Conference on Image Processing (ICIP), Brussels, Belgium, pp. 681–684. IEEE (2011)

    Google Scholar 

  15. Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur kernel estimation using patch priors. In: IEEE International Conference on Computational Photography (ICCP), Cambridge, MA, pp. 1–8. IEEE (2013)

    Google Scholar 

  16. Michaeli, T., Irani, M.: Blind deblurring using internal patch recurrence. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 783–798. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_51

    Chapter  Google Scholar 

  17. Lai, W.S., Ding, J.J., Lin, Y.Y., Chuang, Y.Y.: Blur kernel estimation using normalized color-line priors. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, United States, pp. 64–72. IEEE Computer Society (2015)

    Google Scholar 

  18. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 1628–1636. (2016)

    Google Scholar 

  19. Yan, Y., Ren, W., Guo, Y., Wang, R., Cao, X.: Image deblurring via extreme channels prior. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 6978–6986. (2017)

    Google Scholar 

  20. Zhang, H., Yang, J., Zhang, Y., Huang, T.S.: Sparse representation based blind image deblurring. In: IEEE International Conference on Multimedia and Expo (ICME), Barcelona, Spain, pp. 1–6. IEEE (2011)

    Google Scholar 

  21. Li, H., Zhang, Y., Zhang, H., Zhu, Y., Sun, J.: Blind image deblurring based on sparse prior of dictionary pair. In: International Conference on Pattern Recognition (ICPR), Tsukuba, Japan, pp. 3054–3057. IEEE (2012)

    Google Scholar 

  22. Yu, J., Chang, Z., Xiao, C., Sun, W.: Blind image deblurring based on sparse representation and structural self-similarity. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, pp. 1328–1332. IEEE (2017)

    Google Scholar 

  23. Aharon, M., Elad, M., Bruckstein, A.: SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  24. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theor. 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  25. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: 2009 International Conference on Computer Vision (ICCV), Kyoto, Japan, pp. 349–356. IEEE (2009)

    Google Scholar 

  26. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, United States, pp. 60–65. IEEE (2005)

    Google Scholar 

  27. Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans. Image Process. 18(1), 36–51 (2009)

    Article  MathSciNet  Google Scholar 

  28. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)

    Article  MathSciNet  Google Scholar 

  29. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, pp. 479–486. IEEE (2011)

    Google Scholar 

  30. Olonetsky, I., Avidan, S.: TreeCANN - k-d tree coherence approximate nearest neighbor algorithm. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 602–615. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_43

    Chapter  Google Scholar 

  31. Cho, T.S., Paris, S., Horn, B.K.P., Freeman, W.T.: Blur kernel estimation using the radon transform. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, pp. 241–248. IEEE (2011)

    Google Scholar 

  32. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, pp. 233–240. IEEE (2011)

    Google Scholar 

  33. Perrone, D., Diethelm, R., Favaro, P.: Blind deconvolution via lower-bounded logarithmic image priors. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 112–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14612-6_9

    Chapter  Google Scholar 

  34. Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S.: Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 27–40. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_3

    Chapter  Google Scholar 

  35. Chen, L., Fang, F., Wang, T., Zhang, G.: Blind image deblurring with local maximum gradient prior. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 1742–1750. IEEE (2019)

    Google Scholar 

  36. Anger, J., Facciolo, G., Delbracio, M.: Blind image deblurring using the l0 gradient prior. Image Process. On Line 9, 124–142 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuangbai Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, J., Guo, L., Xiao, C., Chang, Z. (2021). Edge-Based Blur Kernel Estimation Using Sparse Representation and Self-similarity. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12889. Springer, Cham. https://doi.org/10.1007/978-3-030-87358-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87358-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87357-8

  • Online ISBN: 978-3-030-87358-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics