Skip to main content

Measures of Classical and Alternative Complement Function in Serum as Markers in Critical Care

  • Living reference work entry
  • First Online:
Biomarkers in Trauma, Injury and Critical Care

Abstract

The human complement system is a crucial component of the host response to pathogen invaders, cellular stress, and injury – all of which are common causes and manifestations of critical illness. The complement cascade can be activated by alternative, classical, and lectin pathways that function as immune recognition pathways. Yet, the capacity of the complement system to respond to infection and injury depends not only on the ability to activate but also on effective regulation to prevent complement factor exhaustion, limit inflammation, and preserve complement function to respond to threats. Therefore, measurements of complement pathway function and levels of specific complement proteins may serve as useful biomarkers during critical illness. Complement activity or function is widely variable during critical illness caused by sepsis and other infections, acute respiratory failure including pneumonia, and during the massive injury of trauma. Preserved complement function has been associated with improved outcomes across numerous investigations. However, whether preservation of complement function is a causal mechanism or the consequence of decreased burden of pathogen or injury is unclear and worthy of future research. Herein, we present key biology of the complement system, review assays of complement function, and describe key findings of the existing literature evaluating complement function during critical illness. We further present potential topics for future research on the complement system during critical illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AH50:

Hemolytic assay utilized to evaluate alternative complement pathway function

ARDS:

Acute respiratory distress syndrome

CH50:

Hemolytic assay utilized to evaluate classical complement pathway function

COVID-19:

Coronavirus disease 2019, the human disease caused by the SARS-CoV-2 virus

EDTA:

Ethylenediaminetetraacetic acid, a protease inhibitor that chelates calcium, magnesium, and other ions

EGTA:

Ethylene-bis(oxyethylenenitrilo)tetraacetic acid, a chelating agent related to EDTA but with lower affinity for magnesium

ELISA:

Enzyme-linked immunosorbent assay

ICU:

Intensive care unit

IgG:

Immunoglobulin G

IgM:

Immunoglobulin M

LPS:

Lipopolysaccharide

MAC:

Membrane attack complex

MASP:

MBL-associated serine protease

MBL:

Mannose-binding lectin

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

sC5b-C9:

Soluble form of protein complex known as membrane attack complex that is terminal protein complex of complement action

SNP:

Single nucleotide polymorphism

References

  • Afzali B, Noris M, Lambrecht BN, Kemper C. The state of complement in COVID-19. Nat Rev Immunol. 2022;22(2):77–84.

    Article  CAS  PubMed  Google Scholar 

  • Agbeko RS, Fidler KJ, Allen ML, et al. Genetic variability in complement activation modulates the systemic inflammatory response syndrome in children. Pediatr Crit Care Med. 2010;11(5):561–7.

    Article  PubMed  Google Scholar 

  • Al-Sharif WZ, Sunyer JO, Lambris JD, Smith LC. Sea urchin coelomocytes specifically express a homologue of the complement component C3. J Immunol. 1998;160(6):2983–97.

    CAS  PubMed  Google Scholar 

  • Arbore G, Kemper C, Kolev M. Intracellular complement - the complosome - in immune cell regulation. Mol Immunol. 2017;89:2–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bain W, Li H, van der Geest R, et al. Increased alternative complement pathway function and improved survival during critical illness. Am J Respir Crit Care Med. 2020;202(2):230–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker CC, Oppenheimer L, Stephens B, Lewis FR, Trunkey DD. Epidemiology of trauma deaths. Am J Surg. 1980;140(1):144–50.

    Article  CAS  PubMed  Google Scholar 

  • Blatt AZ, Pathan S, Ferreira VP. Properdin: a tightly regulated critical inflammatory modulator. Immunol Rev. 2016;274(1):172–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosmann M. Complement control for COVID-19. Sci Immunol. 2021;6(59)

    Google Scholar 

  • Brandtzaeg P, Mollnes TE, Kierulf P. Complement activation and endotoxin levels in systemic meningococcal disease. J Infect Dis. 1989;160(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  • Bronkhorst MWGA, Lomax MAZ, Vossen RHAM, et al. Risk of infection and sepsis in severely injured patients related to single nucleotide polymorphisms in the lectin pathway. Br J Surg. 2013;100(13):1818–26.

    Article  CAS  PubMed  Google Scholar 

  • Burk A-M, Martin M, Flierl MA, et al. Early complementopathy after multiple injuries in humans. Shock. 2012;37(4):348–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caly WR, Strauss E. A prospective study of bacterial infections in patients with cirrhosis. J Hepatol. 1993;18(3):353–8.

    Article  CAS  PubMed  Google Scholar 

  • Coonrod JD, Rylko-Bauer B. Complement levels in pneumococcal pneumonia. Infect Immun. 1977;18(1):14–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coonrod JD, Yoneda K. Comparative role of complement in pneumococcal and staphylococcal pneumonia. Infect Immun. 1982;37(3):1270–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costabile M. Measuring the 50% haemolytic complement (CH50) activity of serum. J Vis Exp. 2010;37

    Google Scholar 

  • de Córdoba SR, de Jorge EG. Translational mini-review series on complement factor H: genetics and disease associations of human complement factor H. Clin Exp Immunol. 2008;151(1):1–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Rooij B-JF, van Hoek B, ten Hove WR, et al. Lectin complement pathway gene profile of donor and recipient determine the risk of bacterial infections after orthotopic liver transplantation. Hepatology. 2010;52(3):1100–10.

    Article  PubMed  Google Scholar 

  • de Vries RR, Meera Khan P, Bernini LF, van Loghem E, van Rood JJ. Genetic control of survival in epidemics. J Immunogenet. 1979;6(4):271–87.

    Article  PubMed  Google Scholar 

  • DeCoux A, Tian Y, DeLeon-Pennell KY, et al. Plasma glycoproteomics reveals sepsis outcomes linked to distinct proteins in common pathways. Crit Care Med. 2015;43(10):2049–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Pasquale M, Esperatti M, Crisafulli E, et al. Impact of chronic liver disease in intensive care unit acquired pneumonia: a prospective study. Intensive Care Med. 2013;39(10):1776–84.

    Article  PubMed  Google Scholar 

  • Dobke M, Roberts C, Pearson G, et al. A quantitative measurement of complement (C3) activation in severely burned patients. J Burn Care Rehabilit. 1984;5(2):152–7.

    Article  Google Scholar 

  • Duchateau J, Haas M, Schreyen H, et al. Complement activation in patients at risk of developing the adult respiratory distress syndrome. Am Rev Respir Dis. 1984;130(6):1058–64.

    CAS  PubMed  Google Scholar 

  • Dunkelberger JR, Song W-C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50.

    Article  CAS  PubMed  Google Scholar 

  • Ecker EE, Seifter S, Dozois TF, Barr L. Complement in infectious disease in man. J Clin Invest. 1946;25(6):800–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ekdahl KN, Persson B, Mohlin C, et al. Interpretation of serological complement biomarkers in disease. Front Immunol. 2018;9:2237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elvington M, Liszewski MK, Atkinson JP. Evolution of the complement system: from defense of the single cell to guardian of the intravascular space. Immunol Rev. 2016;274(1):9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ely EW, Ramanan AV, Kartman CE, et al. Efficacy and safety of baricitinib plus standard of care for the treatment of critically ill hospitalised adults with COVID-19 on invasive mechanical ventilation or extracorporeal membrane oxygenation: an exploratory, randomised, placebo-controlled trial. Lancet Respir Med. 2022;10(4):327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falguera M, Trujillano J, Caro S, et al. A prediction rule for estimating the risk of bacteremia in patients with community-acquired pneumonia. Clin Infect Dis. 2009;49(3):409–16.

    Article  PubMed  Google Scholar 

  • Fearon DT, Ruddy S, Schur PH, McCabe WR. Activation of the properdin pathway of complement in patients with gram-negative of bacteremia. N Engl J Med. 1975;292(18):937–40.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira VP, Pangburn MK, Cortés C. Complement control protein factor H: the good, the bad, and the inadequate. Mol Immunol. 2010;47(13):2187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fosse E, Pillgram-Larsen J, Svennevig JL, et al. Complement activation in injured patients occurs immediately and is dependent on the severity of the trauma. Injury. 1998;29(7):509–14.

    Article  CAS  PubMed  Google Scholar 

  • Fredrikson GN, Truedsson L, Sjöholm AG. New procedure for the detection of complement deficiency by ELISA. Analysis of activation pathways and circumvention of rheumatoid factor influence. J Immunol Methods. 1993;166(2):263–70.

    Article  CAS  PubMed  Google Scholar 

  • Ganter MT, Brohi K, Cohen MJ, et al. Role of the alternative pathway in the early complement activation following major trauma. Shock. 2007;28(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  • Gardinali M, Padalino P, Vesconi S, et al. Complement activation and polymorphonuclear neutrophil leukocyte elastase in sepsis. Correlation with severity of disease. Arch Surg. 1992;127(10):1219–24.

    Article  CAS  PubMed  Google Scholar 

  • Guimarães PO, Quirk D, Furtado RH, et al. Tofacitinib in patients hospitalized with Covid-19 pneumonia. N Engl J Med. 2021;385(5):406–15.

    Article  PubMed  Google Scholar 

  • Hack CE, Nuijens JH, Felt-Bersma RJ, et al. Elevated plasma levels of the anaphylatoxins C3a and C4a are associated with a fatal outcome in sepsis. Am J Med. 1989;86(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  • Harris CL, Heurich M, Rodriguez de Cordoba S, Morgan BP. The complotype: dictating risk for inflammation and infection. Trends Immunol. 2012;33(10):513–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heideman M, Norder-Hansson B, Bengtson A, Mollnes TE. Terminal complement complexes and anaphylatoxins in septic and ischemic patients. Arch Surg. 1988;123(2):188–92.

    Article  CAS  PubMed  Google Scholar 

  • Heurich M, Martínez-Barricarte R, Francis NJ, et al. Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk. Proc Natl Acad Sci U S A. 2011;108(21):8761–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homann C, Varming K, Høgåsen K, et al. Acquired C3 deficiency in patients with alcoholic cirrhosis predisposes to infection and increased mortality. Gut. 1997;40(4):544–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joiner KA, Hawiger A, Gelfand JA. A study of optimal reaction conditions for an assay of the human alternative complement pathway. Am J Clin Pathol. 1983;79(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  • Kalter ES, Daha MR, ten Cate JW, Verhoef J, Bouma BN. Activation and inhibition of Hageman factor-dependent pathways and the complement system in uncomplicated bacteremia or bacterial shock. J Infect Dis. 1985;151(6):1019–27.

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann SHE. Immunology’s foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nat Immunol. 2008;9(7):705–12.

    Article  CAS  PubMed  Google Scholar 

  • Kemper C, Atkinson JP, Hourcade DE. Properdin: emerging roles of a pattern-recognition molecule. Annu Rev Immunol. 2010;28:131–55.

    Article  CAS  PubMed  Google Scholar 

  • Kirschfink M, Mollnes TE. Modern complement analysis. Clin Diagn Lab Immunol. 2003;10(6):982–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni HS, Elvington ML, Perng Y-C, et al. Intracellular C3 protects human airway epithelial cells from stress-associated cell death. Am J Respir Cell Mol Biol. 2019;60(2):144–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvarnström A, Sokolov A, Swartling T, et al. Alternative pathway activation of complement in laparoscopic and open rectal surgery. Scand J Immunol. 2012;76(1):49–53.

    Article  PubMed  CAS  Google Scholar 

  • Langlois PF, Gawryl MS, Zeller J, Lint T. Accentuated complement activation in patient plasma during the adult respiratory distress syndrome: a potential mechanism for pulmonary inflammation. Heart Lung. 1989;18(1):71–84.

    CAS  PubMed  Google Scholar 

  • Li Y, Zhao Q, Liu B, et al. Early complementopathy predicts the outcomes of patients with trauma. Trauma Surg Acute Care Open. 2019;4(1):e000217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liszewski MK, Kolev M, Le Friec G, et al. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation. Immunity. 2013;39(6):1143–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Sahu SK, Cano M, Kuppuswamy V, Bajwa J, McPhatter JN, Pine A, Meizlish ML, Goshua G, Chang CH, Zhang H, Price C, Bahel P, Rinder H, Lei T, Day A, Reynolds D, Wu X, Schriefer R, Rauseo AM, Goss CW, O’Halloran JA, Presti RM, Kim AH, Gelman AE, Dela Cruz CS, Lee AI, Mudd PA, Chun HJ, Atkinson JP, Kulkarni HS. Increased complement activation is a distinctive feature of severe SARS-CoV-2 infection. Sci Immunol. 2021;6(59)

    Google Scholar 

  • McCabe WR. Serum complement levels in bacteremia due to gram-negative organisms. N Engl J Med. 1973;288(1):21–3.

    Article  CAS  PubMed  Google Scholar 

  • Mollnes TE, Garred P, Bergseth G. Effect of time, temperature and anticoagulants on in vitro complement activation: consequences for collection and preservation of samples to be examined for complement activation. Clin Exp Immunol. 1988;73(3):484–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mollnes TE, Jokiranta TS, Truedsson L, et al. Complement analysis in the 21st century. Mol Immunol. 2007;44(16):3838–49.

    Article  CAS  PubMed  Google Scholar 

  • Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol. 2013;33(6):479–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien ME, Fee L, Browne N, et al. Activation of complement component 3 is associated with airways disease and pulmonary emphysema in alpha-1 antitrypsin deficiency. Thorax. 2020;75(4):321–30.

    Article  PubMed  Google Scholar 

  • Petersen SV, Thiel S, Jensen L, Steffensen R, Jensenius JC. An assay for the mannan-binding lectin pathway of complement activation. J Immunol Methods. 2001;257(1–2):107–16.

    Article  CAS  PubMed  Google Scholar 

  • Poole AZ, Kitchen SA, Weis VM. The role of complement in cnidarian-dinoflagellate Symbiosis and immune challenge in the sea anemone Aiptasia pallida. Front Microbiol. 2016;7:519.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prohászka Z, Nilsson B, Frazer-Abel A, Kirschfink M. Complement analysis 2016: clinical indications, laboratory diagnostics and quality control. Immunobiology. 2016;221(11):1247–58.

    Article  PubMed  CAS  Google Scholar 

  • Ram S, Lewis LA, Rice PA. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev. 2010;23(4):740–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis E, Falcão DA, Isaac L. Clinical aspects and molecular basis of primary deficiencies of complement component C3 and its regulatory proteins factor I and factor H. Scand J Immunol. 2006;63(3):155–68.

    Article  CAS  Google Scholar 

  • Robbins RA, Russ WD, Rasmussen JK, Clayton MM. Activation of the complement system in the adult respiratory distress syndrome. Am Rev Respir Dis. 1987;135(3):651–8.

    CAS  PubMed  Google Scholar 

  • Rønholm E, Tomasdottir H, Runeborg J, et al. Complement system activation during orthotopic liver transplantation in man. Indications of peroperative complement system activation in the gut. Transplantation. 1994;57(11):1594–7.

    Article  PubMed  Google Scholar 

  • Roos A, Wieslander J. Evaluation of complement function by ELISA. Methods Mol Biol. 2014;1100:11–23.

    Article  CAS  PubMed  Google Scholar 

  • Roos A, Bouwman LH, Munoz J, et al. Functional characterization of the lectin pathway of complement in human serum. Mol Immunol. 2003;39(11):655–68.

    Article  CAS  PubMed  Google Scholar 

  • Roumen RM, Redl H, Schlag G, et al. Inflammatory mediators in relation to the development of multiple organ failure in patients after severe blunt trauma. Crit Care Med. 1995;23(3):474–80.

    Article  CAS  PubMed  Google Scholar 

  • Runyon BA. Patients with deficient ascitic fluid opsonic activity are predisposed to spontaneous bacterial peritonitis. Hepatology. 1988;8(3):632–5.

    Article  CAS  PubMed  Google Scholar 

  • Runyon BA, Morrissey RL, Hoefs JC, Wyle FA. Opsonic activity of human ascitic fluid: a potentially important protective mechanism against spontaneous bacterial peritonitis. Hepatology. 1985;5(4):634–7.

    Article  CAS  PubMed  Google Scholar 

  • Rutstein DD, Walker WH. Complement activity in pneumonia. J Clin Invest. 1942;21(3):347–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber H, Rittirsch D, Flierl M, et al. Complement activation during sepsis in humans. Adv Exp Med Biol. 2006;586:217–26.

    Article  CAS  PubMed  Google Scholar 

  • Seelen MA, Roos A, Wieslander J, et al. Functional analysis of the classical, alternative, and MBL pathways of the complement system: standardization and validation of a simple ELISA. J Immunol Methods. 2005;296(1–2):187–98.

    Article  CAS  PubMed  Google Scholar 

  • Sinkovits G, Mező B, Réti M, et al. Complement Overactivation and consumption predicts in-hospital mortality in SARS-CoV-2 infection. Front Immunol. 2021;12:663187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry JL, Guyette FX, Brown JB, et al. Prehospital plasma during air medical transport in trauma patients at risk for hemorrhagic shock. N Engl J Med. 2018;379(4):315–26.

    Article  PubMed  Google Scholar 

  • Stöve S, Klos A, Bautsch W, Köhl J. Re-evaluation of the storage conditions for blood samples which are used for determination of complement activation. J Immunol Methods. 1995;182(1):1–5.

    Article  PubMed  Google Scholar 

  • Stöve S, Welte T, Wagner TO, et al. Circulating complement proteins in patients with sepsis or systemic inflammatory response syndrome. Clin Diagn Lab Immunol. 1996;3(2):175–83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thurman JM, Holers VM. The central role of the alternative complement pathway in human disease. J Immunol. 2006;176(3):1305–10.

    Article  CAS  PubMed  Google Scholar 

  • Tortajada A, Montes T, Martínez-Barricarte R, et al. The disease-protective complement factor H allotypic variant Ile62 shows increased binding affinity for C3b and enhanced cofactor activity. Hum Mol Genet. 2009;18(18):3452–61.

    Article  CAS  PubMed  Google Scholar 

  • Unnewehr H, Rittirsch D, Sarma JV, et al. Changes and regulation of the C5a receptor on neutrophils during septic shock in humans. J Immunol. 2013;190(8):4215–25.

    Article  CAS  PubMed  Google Scholar 

  • van den Broek B, van der Flier M, de Groot R, de Jonge MI, Langereis JD. Common genetic variants in the complement system and their potential link with disease susceptibility and outcome of invasive bacterial infection. J Innate Immun. 2020;12(2):131–41.

    Article  PubMed  CAS  Google Scholar 

  • van Deventer SJ, Büller HR, ten Cate JW, et al. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood. 1990;76(12):2520–6.

    Article  PubMed  Google Scholar 

  • Vercauteren KOA, Lambrecht S, Delanghe J. Preanalytical classical and alternative complement pathway activity loss. Biochem Med (Zagreb). 2019;29(3):030701.

    Article  Google Scholar 

  • Walport MJ. Complement. First of two parts. N Engl J Med. 2001;344(14):1058–66.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg PF, Matthay MA, Webster RO, et al. Biologically active products of complement and acute lung injury in patients with the sepsis syndrome. Am Rev Respir Dis. 1984;130(5):791–6.

    CAS  PubMed  Google Scholar 

  • Westra D, Volokhina EB, van der Molen RG, et al. Serological and genetic complement alterations in infection-induced and complement-mediated hemolytic uremic syndrome. Pediatr Nephrol. 2017;32(2):297–309.

    Article  PubMed  Google Scholar 

  • Whaley K, Schur PH, McCABE WR, Ruddy S. Modulation of the alternative complement pathway in patients with gram-negative bacteraemia. Parasite Immunol. 1980;2(1):29–37.

    Article  Google Scholar 

  • Wolbink GJ, Bossink AW, Groeneveld AB, et al. Complement activation in patients with sepsis is in part mediated by C-reactive protein. J Infect Dis. 1998;177(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Freiwald T, Chauss D, et al. SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation. Sci Immunol. 2021;6(58)

    Google Scholar 

  • Yang S, McGookey M, Wang Y, Cataland SR, Wu HM. Effect of blood sampling, processing, and storage on the measurement of complement activation biomarkers. Am J Clin Pathol. 2015;143(4):558–65.

    Article  PubMed  Google Scholar 

  • Zilow G, Joka T, Obertacke U, Rother U, Kirschfink M. Generation of anaphylatoxin C3a in plasma and bronchoalveolar lavage fluid in trauma patients at risk for the adult respiratory distress syndrome. Crit Care Med. 1992;20(4):468–73.

    Article  CAS  PubMed  Google Scholar 

  • Zilow G, Zilow EP, Burger R, Linderkamp O. Complement activation in newborn infants with early onset infection. Pediatr Res. 1993;34(2):199–203.

    Article  CAS  PubMed  Google Scholar 

  • Zwirner J, Felber E, Reiter C, Riethmüller G, Feucht HE. Deposition of complement activation products on plastic-adsorbed immunoglobulins. A simple ELISA technique for the detection of defined complement deficiencies. J Immunol Methods. 1989;124(1):121–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet S. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bain, W., Gonzalez-Ferrer, S., Nouraie, S.M., Lee, J.S. (2022). Measures of Classical and Alternative Complement Function in Serum as Markers in Critical Care. In: Rajendram, R., Preedy, V.R., Patel, V.B. (eds) Biomarkers in Trauma, Injury and Critical Care. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-87302-8_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87302-8_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87302-8

  • Online ISBN: 978-3-030-87302-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics