Skip to main content

Impact of Climate Change on Food Security and Plant Disease

  • Chapter
  • First Online:
Microbial Biocontrol: Food Security and Post Harvest Management

Abstract

Plant disease causes significant loss of agricultural productivity during pre- or post-harvest storage condition. However the changing climatic conditions aggravate the crop damages by erupting and favouring certain plant diseases, and it has been expected that if the current ongoing situation of climate change continues, there will be relocation of agricultural products, and the impacts of plant diseases will be felt heavier in economic terms. However, it has been well established that each component of the host-pathogen interaction will have certain interaction with the environment and can be influenced by changing climatic conditions. The elevation in the CO2, ozone and UV-B level severely affects the host physiology and resistance and thus sometimes results in any new plant diseases or eruption of certain pests. Moreover, sometimes the changes in the environmental conditions or high intensity of rainfall, may affect the effectiveness of agrochemicals natural microflora which ultimately affect the biocontrol efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios N (2005) Plant pathology. CRC Press, 980

    Google Scholar 

  • Aguilar E, Allende L, Del Toro FJ, Chung BN, Canto T, Tenllado F (2015) Effects of elevated CO2 and temperature on pathogenicity determinants and virulence of potato virus X/Potyvirus-associated synergism. Mol Plant-Microbe Interact 28(12):1364–1373

    CAS  PubMed  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165(2):351–372

    PubMed  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10):535–544

    PubMed  Google Scholar 

  • Anwar MR, O’Leary G, McNeil D, Hossain H, Nelson R (2007) Climate change impact on rainfed wheat in South-Eastern Australia. Field Crop Res 104(1–3):139–147

    Google Scholar 

  • Anwar WA, Khaled HM, Amra HA, El-Nezami H, Loffredo CA (2008) Changing pattern of hepatocellular carcinoma (HCC) and its risk factors in Egypt: possibilities for prevention. Mutat Res Rev Mutat Res 659(1–2):176–184

    CAS  Google Scholar 

  • Asselbergh BOB, Achuo AE, Höfte M, Van Gijsegem F (2008) Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Mol Plant Pathol 9(1):11–24

    CAS  PubMed  Google Scholar 

  • Audho JO, Ojango NE, Oyieng E, Okeyo AM, Ojango JMK (2015) Milk from indigenous sheep breeds: an adaptation approach to climate change by women in Isinya, Kajiado County in Kenya. In: Ojango JM, Malmfors B, Okeyo AM (eds) Animal genetics training resource. International Livestock Research Institute and Uppsala, Sweden, Swedish University of Agricultural Sciences, Kenya, Nairobi

    Google Scholar 

  • Baker RHA, Sansford CE, Jarvis CH, Cannon RJC, MacLeod A, Walters KFA (2000) The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agric Ecosyst Environ 82(1–3):57–71

    Google Scholar 

  • Baldocchi D, Valentini R (2004) Geographic and temporal variation of the mechanisms controlling carbon exchange by ecosystems and their sensitivity to environmental perturbations. In: Field CB, Raupach M (eds) SCOPE 62 the global carbon cycle: integrating humans, climate, and the natural world. Island Press, pp 295–315

    Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32(7–8):921–950

    CAS  Google Scholar 

  • Bariana HS, Brown GN, Bansal UK, Miah H, Standen GE, Lu M (2007) Breeding triple rust resistant wheat cultivars for Australia using conventional and marker-assisted selection technologies. Aust J Agric Res 58(6):576–587

    Google Scholar 

  • Barnes AP, Wreford A, Butterworth MH, Semenov MA, Moran D, Evans N, Fitt BD (2010) Adaptation to increasing severity of phoma stem canker on winter oilseed rape in the UK under climate change. J Agric Sci 148:683

    Google Scholar 

  • Bastas KK (2013) Effects of climatic changes on plant pathogenic bacteria. In ISAE 2013. Proceedings of the International Symposium on Agriculture and Environment 2013, 28 November 2013, University of Ruhuna, Sri Lanka (pp. 237–243). Faculty of Agriculture, University of Ruhuna

    Google Scholar 

  • Bastas KK (2014) Impacts of climate change on plant diseases. Turkish-German Agricultural Sciences Workshop, Global Climate Change and Effects on Agriculture. Keynote Speaker, 11 page

    Google Scholar 

  • Bebber DP, Ramotowski MAT, Gurr SJ (2013) Crop pests and pathogens move polewards in a warming world. Nat Clim Chang 3:985–988. https://doi.org/10.1038/NCLIMATE1990

    Article  Google Scholar 

  • Beresford RM, McKay AH (2012) Climate change impacts on plant diseases affecting New Zealand Horticulture, September 2012, MPI Technical Paper No: 2012/ 65p

    Google Scholar 

  • Bilgin DD, Aldea M, O'Neill BF, Benitez M, Li M, Clough SJ, DeLucia EH (2008) Elevated ozone alters soybean-virus interaction. Mol Plant-Microbe Interact 21(10):1297–1308

    CAS  PubMed  Google Scholar 

  • Blaney BJ, Moore CJ, Tyler AL (1987) The mycotoxins dash 4-deoxynivalenol, zearalenone and aflatoxin dash in weather-damaged wheat harvested 1983-1985 in South-Eastern Queensland. Aust J Agric Res 38(6):993–1000

    CAS  Google Scholar 

  • Boyer JS (1995) Measuring the water status of plants and soils. Academic Press, Inc

    Google Scholar 

  • Bradbury JF (1986) Guide to plant pathogenic bacteria. CAB international

    Google Scholar 

  • Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridization: hybridization is leading to rapid evolution of Dutch elm disease and other fungal plant pathogens. Bioscience 51(2):123–133

    Google Scholar 

  • Butterworth MH, Semenov MA, Barnes A, Moran D, West JS, Fitt BD (2010) North–south divide: contrasting impacts of climate change on crop yields in Scotland and England. J R Soc Interface 7(42):123–130

    PubMed  Google Scholar 

  • Campbell BM, Vermeulen SJ, Aggarwal PK, Corner-Dolloff C, Girvetz E, Loboguerrero AM, Ramirez-Villegas J, Rosenstock T, Sebastian L, Thornton PK, Wollenberg E (2016) Reducing risks to food security from climate change. Glob Food Sec 11:34–43

    Google Scholar 

  • Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. John Wiley & Sons, 140

    Google Scholar 

  • Casteel CL, O'neill BF, Zavala JA, Bilgin DD, Berenbaum MR, Delucia EH (2008) Transcriptional profiling reveals elevated CO2 and elevated O3 alter resistance of soybean (Glycine max) to Japanese beetles (Popillia japonica). Plant Cell Environ 31(4):419–434

    CAS  PubMed  Google Scholar 

  • Chakraborty S (2005) Potential impact of climate change on plant- pathogen interactions. Australas Plant Pathol 34:443–448

    Google Scholar 

  • Chakraborty S, Datta S (2003) How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Phytol 159:733–742

    CAS  PubMed  Google Scholar 

  • Chakraborty S, Luck J, Hollaway G, Fitzgerald G, White N (2010) Rust-proofing wheat for a changing climate. Euphytica 179:19–32

    Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60(1):2–14

    Google Scholar 

  • Chakraborty S, Tiedemann AV, Teng PS (2000) Climate change: potential impact on plant diseases. Environ Pollut 108:317–326

    CAS  PubMed  Google Scholar 

  • Chardon F, Barthélémy J, Daniel-Vedele F, Masclaux-Daubresse C (2010) Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. J Exp Bot 61(9):2293–2302

    CAS  PubMed  Google Scholar 

  • Churkina G, Running SW (1998) Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1(2):206–215

    Google Scholar 

  • Colhoun J (1973) Effects of environmental factors on plant disease. Annu Rev Phytopathol 11(1):343–364

    Google Scholar 

  • Colhoun J (1979) Predisposition by the environment. In: Horsfall JG, Cowling EB (eds) Plant disease. Academic Press, New York, USA, pp 75–92

    Google Scholar 

  • Dalcero A, Torres A, Etcheverry M, Chulze S, Varsavsky E (1997) Occurrence of deoxynivalenol and fusarium graminearum in Argentinian wheat. Food Addit Contam 14(1):11–14

    CAS  PubMed  Google Scholar 

  • De Wolf ED, Isard SA (2007) Disease cycle approach to plant disease prediction. Annu Rev Phytopathol 45:203–220

    PubMed  Google Scholar 

  • Dhankher A (2018) Climate resilient crops for improving global food security and safety. Plant Cell Environ 41(5):877–884. Special Issue: Special Issue on Climate Resilient Crops. https://doi.org/10.1111/pce.13207

    Article  PubMed  Google Scholar 

  • Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679

    Google Scholar 

  • Eastburn DM, McElrone AJ, Bilgin DD (2011) Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathol 60:54–69

    Google Scholar 

  • Ellis JG, Mago R, Kota R, Dodds PN, McFadden H, Lawrence G, Spielmeyer W, Lagudah E (2007) Wheat rust resistance research at CSIRO. Aust J Agric Res 56:507–511

    Google Scholar 

  • FAO (2015) Climate change and food security: risks and responses. ISBN 978–92–5-108998-9, p. 122

    Google Scholar 

  • Fatmi M, Collmer A, Iacobellis NS, Mansfield J, Murillo J, Schaad NW, Ullrich M (eds.) (2008) Pseudomonas syringae Pathovars and Related Pathogens - Identification, Epidemiology and Genomics. ISBN 978–1–4020-6900-0

    Google Scholar 

  • Fernandes JM, Cunha GR, Del Ponte E, Pavan W, Pires JL, Baethgen W, Gimenez A, Magrin G, Travasso MI (2004) Modelling fusarium head blight in wheat under climate change using linked process-based models. In: Canty SM, Boring T, Wardwell J, Ward RW (eds) 2nd international symposium on fusarium HeadBlight; incorporating the 8th European fusarium seminar; 2004, 11–15 December; Orlando, FL, USA. Michigan State University, East Lansing, MI, pp 441–444

    Google Scholar 

  • Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97(1–3):1–20

    CAS  Google Scholar 

  • Garrett KA (2008) Climate change and plant disease risk. In: Global Climate Change and Extreme Weather Events: Understanding the Contributions to Infectious Disease Emergence, 143–155

    Google Scholar 

  • Garrett KA, Bowden RL (2002) An Allee effect reduces the invasive potential of Tilletia indica. Phytopathology 92(11):1152–1159

    CAS  PubMed  Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509

    CAS  PubMed  Google Scholar 

  • Garrett KA, Nita M, De Wolf ED, Esker PD, Gomez-Montano L, Sparks AH (2021) Plant pathogens as indicators of climate change. In: Climate change. Elsevier, pp 499–513

    Google Scholar 

  • Garrett KA, Nita M, De Wolf ED, Gomez L, Sparks AH (2009) Plant Pathogens as Indicators of Climate Change. Climate Change: Observed Impacts on Planet Earth pp. 425–437, Published by Elsevier

    Google Scholar 

  • Gocho H, Hirai T, Kashio T (1987) Fusarium species and trichothecene mycotoxins in suspect samples of 1985 Manitoba wheat. Canadian J Plant Sci Rev. Canada Phytotechnie Ottawa : Agricultural Institute of Canada 67:611–619

    Google Scholar 

  • Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Philos Trans R Soc B Biol Sci 365(1554):2973–2989

    Google Scholar 

  • Goto M (1992) Fundamentals of bacterial plant pathology. Academic Press, San Diego, CA., ISBN: 9780323140447, p 342

    Google Scholar 

  • Grace D (2015) Food safety in developing countries: an overview. Evidence on Demand, Hemel Hempstead. https://doi.org/10.12774/eod_er.oct2015.graced

    Book  Google Scholar 

  • Gregory PJ, Johnson SN, Newton AC, Ingram JS (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60(10):2827–2838

    CAS  PubMed  Google Scholar 

  • Harrington R, Clark SJ, Welham SJ, Verrier PJ, Denholm CH, Hulle M, European Union Examine Consortium (2007) Environmental change and the phenology of European aphids. Glob Chang Biol 13(8):1550–1564

    Google Scholar 

  • Hijmans RJ, Forbes GA, Walker TS (2000) Estimating the global severity of potato late blight with GIS-linked disease forecast models. Plant Pathol 49(6):697–705

    Google Scholar 

  • Hirel B, Bertin P, Quilleré I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Pray C, Rozelle S (2002) Enhancing the crops to feed the poor. Nature 418:678–684

    CAS  PubMed  Google Scholar 

  • Huber L, Gillespie TJ (1992) Modeling leaf wetness in relation to plant disease epidemiology. Annu Rev Phytopathol 30(1):553–577

    Google Scholar 

  • Johnson AG, Robert AL, Cash L (1949) Bacterial leaf blight and stalk rot of Corn. J Agric Res 78:719–732. Corpus ID: 82857736

    Google Scholar 

  • Jones RA, Barbetti MJ (2012) Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. Plant Sci Rev 22:1–31

    Google Scholar 

  • Jones RAC (1996) Virus diseases of Australian pastures. Pasture Forage Crop Pathol:303–322

    Google Scholar 

  • Jones RAC (2009) Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res 141(2):113–130

    CAS  PubMed  Google Scholar 

  • Jung S, Rasmussen LV, Watkins C, Newton P, Agrawal A (2017) Brazil’s National Environmental Registry of Rural Properties: implications for livelihoods. Ecol Econ 136:53–61. https://doi.org/10.1016/j.ecolecon.2017.02.004

    Article  Google Scholar 

  • Kariola T, Brader G, Helenius E, Li J, Heino P, Palva ET (2006) Early responsive to dehydration 15, a negative regulator of abscisic acid responses in Arabidopsis. Plant Physiol 142(4):1559–1573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Olson TN, Schaad NW (2003) Ralstonia solanacearum race 3 biovar 2, the causal agent of brown rot of potato, identified in geraniums in Pennsylvania, Delaware, and Connecticut. Plant Dis 87:450

    CAS  PubMed  Google Scholar 

  • Kolmer JA (1996) Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol 34(1):435–455

    CAS  PubMed  Google Scholar 

  • Kudela V (2009) Potential impact of climate change on geographic distribution of plant pathogenic bacteria in Central Europe. Plant Prot Sci 45:S27–S32

    Google Scholar 

  • Li FQ, Li YW, Luo XY, Yoshizawa T (2002) Fusarium toxins in wheat from an area in Henan Province, PR China, with a previous human red mould intoxication episode. Food Addit Contam 19(2):163–167

    PubMed  Google Scholar 

  • Lin F, Chen XM (2007) Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet 114(7):1277–1287

    CAS  PubMed  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333(6042):616–620

    CAS  PubMed  Google Scholar 

  • MacDonald S, Prickett TJ, Wildey KB, Chan D (2004) Survey of ochratoxin A and deoxynivalenol in stored grains from the 1999 harvest in the UK. Food Addit Contam 21:172–181

    CAS  PubMed  Google Scholar 

  • Mahmuti M, West JS, Watts J, Gladders P, Fitt BD (2009) Controlling crop disease contributes to both food security and climate change mitigation. Int J Agric Sustain 7(3):189–202

    Google Scholar 

  • Manning WJ, Tiedemann AV (1995) Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88(2):219–245

    CAS  PubMed  Google Scholar 

  • Massel K, Lam Y, Wong AC, Hickey LT, Borrell AK, Godwin ID (2021) Hotter, drier, CRISPR: the latest edit on climate change. Theor Appl Genet:1–19

    Google Scholar 

  • Matros A, Amme S, Kettig B, Buck-Sorlin GH, Sonnewald UWE, Mock HP (2006) Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. Plant Cell Environ 29(1):126–137

    CAS  PubMed  Google Scholar 

  • McKirdy SJ, Jones RAC, Nutter FW Jr (2002) Quantification of yield losses caused by Barley yellow dwarf virus in wheat and oats. Plant Dis 86(7):769–773

    CAS  PubMed  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126(5):969–980

    CAS  PubMed  Google Scholar 

  • Mhamdi A, Noctor G (2016) High CO2 primes plant biotic stress defences through redox-linked pathways. Plant Physiol 172(2):929–942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JD (2008) Mycotoxins in small grains and maize: old problems, new challenges. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:219–230

    CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    CAS  PubMed  Google Scholar 

  • Mohr PG, Cahill DM (2007) Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. Tomato. Funct Integr Genomics 7(3):181–191

    CAS  PubMed  Google Scholar 

  • Muthomi JW, Ndung’u JK, Gathumbi JK, Mutitu EW, Wagacha JM (2008) The occurrence of Fusarium species and mycotoxins in Kenyan wheat. Crop Prot 27(8):1215–1219

    CAS  Google Scholar 

  • Nellemann C, MacDevette M (Eds.) (2009) The environmental food crisis: the environment's role in averting future food crises: a UNEP rapid response assessment. UNEP/Earthprint

    Google Scholar 

  • Newton AC, Begg GS, Swanston JS (2009) Deployment of diversity for enhanced crop function. Ann Appl Biol 154(3):309–322

    Google Scholar 

  • Newton AC, Gravouil C, Fountaine JM (2010) Managing the ecology of foliar pathogens: ecological tolerance in crops. Ann Appl Biol 157(3):343–359. https://doi.org/10.1111/j.1744-7348.2010.00437.x

    Article  Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179(1):3–18

    Google Scholar 

  • Noctor G, Mhamdi A (2017) Climate change, CO2, and defense: the metabolic, redox, and signaling perspectives. Trends Plant Sci 22(10):857–870

    CAS  PubMed  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43

    Google Scholar 

  • Olson RJ, Chisholm SW, Zettler ER, Armbrust EV (1990) Pigments, size, and distributions of Synechococcus in the North Atlantic and Pacific Oceans. Limnol Oceanogr 35(1):45–58

    CAS  Google Scholar 

  • Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, Reynolds M (2008) Climate change: can wheat beat the heat? Agric Ecosyst Environ 126(1–2):46–58

    Google Scholar 

  • Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ (2012) Impacts of climate change on plant diseases-opinions and trends. Eur J Plant Pathol. https://doi.org/10.1007/s10658-012-9936-1

  • Pritchard SG (2011) Soil organisms and global climate change. Plant Pathol 60:82–89

    Google Scholar 

  • Puckette M, Peal L, Steele J, Tang Y, Mahalingam R (2009) Ozone responsive genes in Medicago truncatula: analysis by suppression subtraction hybridization. J Plant Physiol 166(12):1284–1295

    CAS  PubMed  Google Scholar 

  • Reddy PP (2018) Crop protection strategies under climate change scenarios. ISBN: 978-93-87307-08-7

    Google Scholar 

  • Robert Y, Woodford JT, Ducray-Bourdin DG (2000) Some epidemiological approaches to the control of aphid-borne virus diseases in seed potato crops in northern Europe. Virus Res 71(1–2):33–47

    CAS  PubMed  Google Scholar 

  • Rosenberg T, Levi NE, Burdman S (2015) Plant pathogenic Acidovorax species. In: Book: bacteria-plant interactions: advanced research and future trends. https://doi.org/10.21775/9781908230584.04

    Chapter  Google Scholar 

  • Rosenzweig C, Yang XB, Anderson P, Epstein P, Vicarelli M (2005) Agriculture: climate change, crop pests and diseases. In: Epstein P, Mills E (eds) Climate change futures: health, ecological and economic dimensions. The Center for Health and the Global Environment at Harvard Medical School, pp 70–77

    Google Scholar 

  • Saleemullah IA, Khalil IA, Shah H (2006) Aflatoxin contents of stored and artificially inoculated cereals and nuts. Food Chem 98:690–703

    Google Scholar 

  • Schaad NW (2008) In: Fatmi M’B et al (eds) Emerging plant pathogenic bacteria and global warming. Pseudomonas syringae pathovars and related pathogens. Springer Science, pp 369–379

    Google Scholar 

  • Schaad NW, Summer DR, Ware GO (1980) Influence of temperature and light on severity of bacterial blight of corn, oats, and wheat. Plant Dis 64(5):481–482

    Google Scholar 

  • Schnathorst WC, Mathre DE (1966) Host range and differentiation of a severe form of Verticillium albo-atrum in cotton. Phytopathology 56(10):1155–1161

    Google Scholar 

  • Schraudner M, Langebartels C, Sandermann H Jr (1996) Plant defence systems and ozone. Biochem Soc Trans 24(2):456–461

    CAS  PubMed  Google Scholar 

  • Shephard GS (2008) Impact of mycotoxins on human health in developing countries. Food Addit Contam: Part A Chem Anal Control Exposure Risk Assess 25:146–151

    CAS  Google Scholar 

  • Singh HP, Batish DR, Kaur S, Ramezani H, Kohli RK (2002) Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Ann Appl Biol 141(2):111–116

    CAS  Google Scholar 

  • Sohn HY, Savic M, Padilla R, Han G (2006) A novel reaction system involving BaS and BaSO4 for converting SO2 to elemental sulfur without generating pollutants: part I. Feasibility and kinetics of SO2 reduction with BaS. Chem Eng Sci 61(15):5082–5087

    CAS  Google Scholar 

  • Solomon S, Manning M, Marquis M, Qin D (2007) Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge university press

    Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    CAS  PubMed  Google Scholar 

  • Teng N, Wang J, Chen T, Wu X, Wang Y, Lin J (2006) Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol 172(1):92–103

    CAS  PubMed  Google Scholar 

  • Thornton PK, Herrero M (2015) Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat Clim Chang 5(9):830–836

    Google Scholar 

  • Torriani DS, Calanca P, Schmid S, Beniston M, Fuhrer J (2007) Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Clim Res 34(1):59–69

    Google Scholar 

  • Trebicki P, Nancarrow N, Cole E, Bosque NA, Constable FE, Freeman AJ, Brendan Rodoni AL, Yen JE, Luck Itzgerald GJF (2015) Virus disease in wheat predicted to Ä°ncrease with a changing climate. Glob Chang Biol 21:3511–3519. https://doi.org/10.1111/Gcb.12941

    Article  PubMed  Google Scholar 

  • Underwood W, Melotto M, He SY (2007) Role of plant stomata in bacterial invasion. Cell Microbiol 9(7):1621–1629

    CAS  PubMed  Google Scholar 

  • UNEP (2004) Childhood pesticide poisoning information for advocacy and action, United Nations Environment Programme, www.chem.unep.ch/Publications/pdf/pestpoisoning

  • Walters DR, Bingham IJ (2007) Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Ann Appl Biol 151(3):307–324

    CAS  Google Scholar 

  • Wells MA (1974) Nature of water inside phosphatidylcholine micelles in diethyl ether. Biochemistry 13(24):4937–4942

    CAS  PubMed  Google Scholar 

  • West JS, Holdgate S, Townsend JA, Edwards SG, Jennings P, Fitt BD (2012) Impacts of changing climate and agronomic factors on fusarium ear blight of wheat in the UK. Fungal Ecol 5(1):53–61

    Google Scholar 

  • Williams A, Pétriacq P, Beerling DJ, Cotton TE, Ton J (2018) Impacts of atmospheric CO2 and soil nutritional value on plant responses to rhizosphere colonization by soil bacteria. Front Plant Sci 9:1493

    PubMed  PubMed Central  Google Scholar 

  • Wroth JM, Dilworth MJ, Jones RAC (1993) Impaired nodule function in Medicago polymorpha L. infected with alfalfa mosaic virus. New Phytol 124(2):243–250

    CAS  PubMed  Google Scholar 

  • Zavala-Castro J, Zavala-Velázquez J, Walker D, Pérez-Osorio J, Peniche-Lara G (2009) Severe human infection with rickettsia felis associated with hepatitis in Yucatan, Mexico. Int J Med Microbiol 299(7):529–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97(1):111–119

    Google Scholar 

  • Zheng V, Cao B, Zheng Y, Xie, X, Yang Q (2010) Collaborative filtering meets mobile recommendation: a user-centered approach. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 24, No. 1: July 2010, https://ojs.aaai.org/index.php/AAAI/article/view/7577

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kubilay Kurtulus Bastas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastas, K.K. (2022). Impact of Climate Change on Food Security and Plant Disease. In: Kumar, A. (eds) Microbial Biocontrol: Food Security and Post Harvest Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87289-2_1

Download citation

Publish with us

Policies and ethics