Skip to main content

ACN: Adversarial Co-training Network for Brain Tumor Segmentation with Missing Modalities

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Accurate segmentation of brain tumors from magnetic resonance imaging (MRI) is clinically relevant in diagnoses, prognoses and surgery treatment, which requires multiple modalities to provide complementary morphological and physiopathologic information. However, missing modality commonly occurs due to image corruption, artifacts, different acquisition protocols or allergies to certain contrast agents in clinical practice. Though existing efforts demonstrate the possibility of a unified model for all missing situations, most of them perform poorly when more than one modality is missing. In this paper, we propose a novel Adversarial Co-training Network (ACN) to solve this issue, in which a series of independent yet related models are trained dedicated to each missing situation with significantly better results. Specifically, ACN adopts a novel co-training network, which enables a coupled learning process for both full modality and missing modality to supplement each other’s domain and feature representations, and more importantly, to recover the ‘missing’ information of absent modalities. Then, two unsupervised modules, i.e., entropy and knowledge adversarial learning modules are proposed to minimize the domain gap while enhancing prediction reliability and encouraging the alignment of latent representations, respectively. We also adapt modality-mutual information knowledge transfer learning to ACN to retain the rich mutual information among modalities. Extensive experiments on BraTS2018 dataset show that our proposed method significantly outperforms all state-of-the-art methods under any missing situation.

This work was done at AI Lab, Lenovo Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, S., Hu, S.X., Damianou, A., Lawrence, N.D., Dai, Z.: Variational information distillation for knowledge transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data 4 (2017). https://doi.org/10.1038/sdata.2017.117

  3. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge (2018)

    Google Scholar 

  4. Barber, D., Agakov, F.: The IM algorithm: a variational approach to information maximization (2003)

    Google Scholar 

  5. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Annual ACM Conference on Computational Learning Theory (2000). https://doi.org/10.1145/279943.279962

  6. Chartsias, A., Joyce, T., Giuffrida, M.V., Tsaftaris, S.A.: Multimodal MR synthesis via modality-invariant latent representation. IEEE Trans. Med. Imaging 37(3), 803–814 (2018). https://doi.org/10.1109/TMI.2017.2764326

    Article  Google Scholar 

  7. Chen, C., Dou, Q., Jin, Y., Chen, H., Qin, J., Heng, P.-A.: Robust multimodal brain tumor segmentation via feature disentanglement and gated fusion. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 447–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_50

    Chapter  Google Scholar 

  8. Dorent, R., Joutard, S., Modat, M., Ourselin, S., Vercauteren, T.: Hetero-modal variational encoder-decoder for joint modality completion and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 74–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_9

    Chapter  Google Scholar 

  9. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017). http://www.sciencedirect.com/science/article/pii/S1361841516300330

  10. Havaei, M., Guizard, N., Chapados, N., Bengio, Y.: HeMIS: hetero-modal image segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 469–477. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_54

    Chapter  Google Scholar 

  11. Hu, M., et al.: Knowledge distillation from multi-modal to mono-modal segmentation networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 772–781. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_75

    Chapter  Google Scholar 

  12. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36 (2016). https://doi.org/10.1016/j.media.2016.10.004

  13. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  14. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization (2018)

    Google Scholar 

  15. Pan, F., Shin, I., Rameau, F., Lee, S., Kweon, I.S.: Unsupervised intra-domain adaptation for semantic segmentation through self-supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  16. Sharma, A., Hamarneh, G.: Missing MRI pulse sequence synthesis using multi-modal generative adversarial network. IEEE Trans. Med. Imaging 39(4), 1170–1183 (2020)

    Google Scholar 

  17. van Tulder, G., de Bruijne, M.: Why does synthesized data improve multi-sequence classification? In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 531–538. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_65

    Chapter  Google Scholar 

  18. Vu, T.H., Jain, H., Bucher, M., Cord, M., Perez, P.: ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  19. Wang, Y., et al.: Modality-pairing learning for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 230–240. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_21

    Chapter  Google Scholar 

  20. Xu, Z., et al.: Adversarial uni- and multi-modal stream networks for multimodal image registration. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 222–232. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_22

    Chapter  Google Scholar 

  21. Xu, Z., Yan, J., Luo, J., Li, X., Jagadeesan, J.: Unsupervised multimodal image registration with adaptative gradient guidance. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1225–1229 (2021). https://doi.org/10.1109/ICASSP39728.2021.9414320

  22. Yan, J., Chen, S., Zhang, Y., Li, X.: Neural architecture search for compressed sensing magnetic resonance image reconstruction. Comput. Med. Imaging Graph. (2020)

    Google Scholar 

  23. Zhou, T., Ruan, S., Canu, S.: A review: deep learning for medical image segmentation using multi-modality fusion. Array 3–4, 100004 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhang or Zhiqiang He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y. et al. (2021). ACN: Adversarial Co-training Network for Brain Tumor Segmentation with Missing Modalities. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics