Skip to main content

Detecting Hypo-plastic Left Heart Syndrome in Fetal Ultrasound via Disease-Specific Atlas Maps

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Fetal ultrasound screening during pregnancy plays a vital role in the early detection of fetal malformations which have potential long-term health impacts. The level of skill required to diagnose such malformations from live ultrasound during examination is high and resources for screening are often limited. We present an interpretable, atlas-learning segmentation method for automatic diagnosis of Hypo-plastic Left Heart Syndrome (HLHS) from a single ‘4 Chamber Heart’ view image. We propose to extend the recently introduced Image-and-Spatial Transformer Networks (Atlas-ISTN) into a framework that enables sensitising atlas generation to disease. In this framework we can jointly learn image segmentation, registration, atlas construction and disease prediction while providing a maximum level of clinical interpretability compared to direct image classification methods. As a result our segmentation allows diagnoses competitive with expert-derived manual diagnosis and yields an AUC-ROC of 0.978 (1043 cases for training, 260 for validation and 325 for testing).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Labelbox (2021). https://labelbox.com

  2. Prevalence charts and tables (2021). https://eu-rd-platform.jrc.ec.europa.eu/eurocat/eurocat-data/prevalence_en

  3. Arnaout, R., et al.: Expert-level prenatal detection of complex congenital heart disease from screening ultrasound using deep learning. medRxiv, p. 2020.06.22.20137786 (2020)

    Google Scholar 

  4. Arnaout, R., Curran, L., Chinn, E., Zhao, Y., Moon-Grady, A.: Deep-learning models improve on community-level diagnosis for common congenital heart disease lesions. arXiv (2018)

    Google Scholar 

  5. Baumgartner, C.F., et al.: Sononet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans. Med. Imaging 36(11), 2204–2215 (2017)

    Article  Google Scholar 

  6. Budd, S., et al.: Confident head circumference measurement from ultrasound with real-time feedback for sonographers. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 683–691. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_75

    Chapter  Google Scholar 

  7. Calderon, J., et al.: Impact of prenatal diagnosis on neurocognitive outcomes in children with transposition of the great arteries. J. Pediatr. 161(1), 94–98 (2012)

    Article  Google Scholar 

  8. Carneiro, G., Georgescu, B., Good, S., Comaniciu, D.: Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Trans. Med. Imaging 27(9), 1342–1355 (2008)

    Google Scholar 

  9. Clough, J.R., Oksuz, I., Byrne, N., Schnabel, J.A., King, A.P.: Explicit topological priors for deep-learning based image segmentation using persistent homology. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 16–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_2

    Chapter  Google Scholar 

  10. Holland, B., Myers, J., Woods, C., Jr.: Prenatal diagnosis of critical congenital heart disease reduces risk of death from cardiovascular compromise prior to planned neonatal cardiac surgery: a meta-analysis. Ultrasound Obstet. Gynecol. 45(6), 631–638 (2015)

    Article  Google Scholar 

  11. Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  12. Li, J., et al.: Automatic fetal head circumference measurement in ultrasound using random forest and fast ellipse fitting. IEEE J. Biomed. Health Inform. 22(1), 215–223 (2018)

    Google Scholar 

  13. Miceli, F.: A review of the diagnostic accuracy of fetal cardiac anomalies. Australasian J. Ultrasound Med. 18(1), 3–9 (2015)

    Google Scholar 

  14. Monteiro, M., et al.: Stochastic segmentation networks: modelling spatially correlated aleatoric uncertainty. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 12756–12767. Curran Associates, Inc. (2020)

    Google Scholar 

  15. NHS: NHS Fetal Anomaly Screening Programme Handbook Valid from August 2018. Technical report (2018)

    Google Scholar 

  16. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Rasmussen, C., Nickisch, H.: Gaussian processes for machine learning (gpml) toolbox. J. Mach. Learn. Res. 11, 3011–3015 (2010)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Rueda, S., et al.: Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge. IEEE Trans. Med. Imaging 33(4), 797–813 (2014)

    Google Scholar 

  20. Sinclair, M., et al.: Human-level performance on automatic head biometrics in fetal ultrasound using fully convolutional neural networks. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 714–717. IEEE (2018)

    Google Scholar 

  21. Sinclair, M., et al.: Atlas-ISTN: Joint Segmentation, Registration and Atlas Construction with Image-and-Spatial Transformer Networks. arXiv (2020)

    Google Scholar 

  22. Sushma, T.V., Sriraam, N., Megha Arakeri, P., Suresh, S.: Classification of fetal heart ultrasound images for the detection of CHD. In: Raj, J.S., Iliyasu, A.M., Bestak, R., Baig, Z.A. (eds.) Innovative Data Communication Technologies and Application. LNDECT, vol. 59, pp. 489–505. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9651-3_41

    Chapter  Google Scholar 

  23. Tan, J., et al.: Automated detection of congenital heart disease in fetal ultrasound screening. In: Hu, Y., et al. (eds.) ASMUS/PIPPI -2020. LNCS, vol. 12437, pp. 243–252. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60334-2_24

    Chapter  Google Scholar 

  24. Wu, L., et al.: Cascaded fully convolutional networks for automatic prenatal ultrasound image segmentation. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 663–666. IEEE (2017)

    Google Scholar 

  25. Yeo, L., Romero, R.: Fetal Intelligent Navigation Echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart. Ultrasound Obstet. Gynecol. 42(3), 268–284 (2013)

    Google Scholar 

Download references

Acknowledgements

We thank the volunteers and sonographers at St. Thomas’ Hospital London. The work of E.C.R. was supported by the Academy of Medical Sciences/the British Heart Foundation/the Government Department of Business, Energy and Industrial Strategy/the Wellcome Trust Springboard Award [SBF003/1116]. We also gratefully acknowledge financial support from the Wellcome Trust IEH 102431, EPSRC (EP/S022104/1, EP/S013687/1), EPSRC Centre for Medical Engineering [WT 203148/Z/16/Z], the National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London and supported by the NIHR Clinical Research Facility (CRF) at Guy’s and St Thomas’, and Nvidia GPU donations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Budd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Budd, S. et al. (2021). Detecting Hypo-plastic Left Heart Syndrome in Fetal Ultrasound via Disease-Specific Atlas Maps. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics