Skip to main content

Task-Oriented Low-Dose CT Image Denoising

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12906))

Abstract

The extensive use of medical CT has raised a public concern over the radiation dose to the patient. Reducing the radiation dose leads to increased CT image noise and artifacts, which can adversely affect not only the radiologists judgement but also the performance of downstream medical image analysis tasks. Various low-dose CT denoising methods, especially the recent deep learning based approaches, have produced impressive results. However, the existing denoising methods are all downstream-task-agnostic and neglect the diverse needs of the downstream applications. In this paper, we introduce a novel Task-Oriented Denoising Network (TOD-Net) with a task-oriented loss leveraging knowledge from the downstream tasks. Comprehensive empirical analysis shows that the task-oriented loss complements other task-agnostic losses by steering the denoiser to enhance the image quality in the task related regions of interest. Such enhancement in turn brings general boosts on the performance of various methods for the downstream task. The presented work may shed light on the future development of context-aware image denoising methods. Code is available at https://github.com/DIAL-RPI/Task-Oriented-CT-Denoising_TOD-Net.

J. Zhang and H. Chao are co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  2. Beister, M., Kolditz, D., Kalender, W.A.: Iterative reconstruction methods in x-ray CT. Physica Medica 28(2), 94–108 (2012)

    Article  Google Scholar 

  3. Bilic, P., Christ, P.F., Vorontsov, E., Chlebus, G., Chen, H., Dou, Q., et al.: The liver tumor segmentation benchmark (LiTS). arXiv preprint arXiv:1901.04056 (2019)

  4. Chen, H., Dou, Q., Yu, L., Qin, J., Heng, P.A.: Voxresnet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage 170, 446–455 (2018)

    Article  Google Scholar 

  5. Chen, H., et al.: Low-dose CT via convolutional neural network. Biomed. Opt. Express 8(2), 679–694 (2017)

    Article  Google Scholar 

  6. Chen, Y., et al.: Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys. Med. Biol. 58(16), 5803 (2013)

    Article  Google Scholar 

  7. De Man, B., et al.: CatSim: a new computer assisted tomography simulation environment. In: Medical Imaging 2007: Physics of Medical Imaging, vol. 6510, p. 65102G. International Society for Optics and Photonics (2007)

    Google Scholar 

  8. Diakogiannis, F.I., Waldner, F., Caccetta, P., Wu, C.: ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogrammetry Remote Sens. 162, 94–114 (2020)

    Article  Google Scholar 

  9. Feruglio, P.F., Vinegoni, C., Gros, J., Sbarbati, A., Weissleder, R.: Block matching 3D random noise filtering for absorption optical projection tomography. Phys. Med. Biol. 55(18), 5401 (2010)

    Article  Google Scholar 

  10. Hara, A.K., Paden, R.G., Silva, A.C., Kujak, J.L., Lawder, H.J., Pavlicek, W.: Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am. J. Roentgenol. 193(3), 764–771 (2009)

    Article  Google Scholar 

  11. Heller, N., Sathianathen, N., Kalapara, A., Walczak, E., Moore, K., Kaluzniak, H., et al.: The KiTS19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. arXiv preprint arXiv:1904.00445 (2019)

  12. Kang, D., et al.: Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm. In: Medical Imaging 2013: Image Processing, vol. 8669, p. 86692G. International Society for Optics and Photonics (2013)

    Google Scholar 

  13. Li, M., Hsu, W., Xie, X., Cong, J., Gao, W.: SaCNN: self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network. IEEE Trans. Med. Imag. 39(7), 2289–2301 (2020)

    Article  Google Scholar 

  14. Ma, J., et al.: Low-dose computed tomography image restoration using previous normal-dose scan. Med. Phys. 38(10), 5713–5731 (2011)

    Article  Google Scholar 

  15. Manduca, A., et al.: Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Med. Phys. 36(11), 4911–4919 (2009)

    Article  MathSciNet  Google Scholar 

  16. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Wang, J., Lu, H., Li, T., Liang, Z.: Sinogram noise reduction for low-dose CT by statistics-based nonlinear filters. In: Medical Imaging 2005: Image Processing, vol. 5747, pp. 2058–2066. International Society for Optics and Photonics (2005)

    Google Scholar 

  19. Wang, R., et al.: Image quality and radiation dose of low dose coronary CT angiography in obese patients: sinogram affirmed iterative reconstruction versus filtered back projection. Eur. J. Radiol. 81(11), 3141–3145 (2012)

    Article  Google Scholar 

  20. Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imag. 37(6), 1348–1357 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingkun Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Chao, H., Xu, X., Niu, C., Wang, G., Yan, P. (2021). Task-Oriented Low-Dose CT Image Denoising. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics