Skip to main content

Label-Free Physics-Informed Image Sequence Reconstruction with Disentangled Spatial-Temporal Modeling

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Traditional approaches to image reconstruction uses physics-based loss with data-efficient inference, although the difficulty to properly model the inverse solution precludes learning the reconstruction across a distribution of data. Modern deep learning approaches enable expressive modeling but rely on a large number of reconstructed images (labeled data) that are often not available in practice. To combine the best of the above two lines of works, we present a novel label-free image reconstruction network that is supervised by physics-based forward operators rather than labeled data. We further present an expressive yet disentangled spatial-temporal modeling of the inverse solution, where its latent dynamics is modeled by neural ordinary differential equations and its emission over non-Euclidean geometrical domains by graph convolutional neural networks. We applied the presented method to reconstruct electrical activity on the heart surface from body-surface potential. In simulation and real-data experiments in comparison to both traditional physics-based and modern data-driven reconstruction methods, we demonstrated the ability of the presented method to learn how to reconstruct using observational data without any corresponding labels.

X. Jiang and R. Missel contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos Solit. Fract. 7(3), 293–301 (1996)

    Article  Google Scholar 

  2. Aras, K., et al.: Experimental data and geometric analysis repository-EDGAR. J. Electrocardiol. 48(6), 975–981 (2015)

    Article  Google Scholar 

  3. Cacciola, F.: Triangulated surface mesh simplification. In: CGAL User and Reference Manual. CGAL Editorial Board, 5.0.2 edn. (2020). https://doc.cgal.org/5.0.2/Manual/packages.html#PkgSurfaceMeshSimplification

  4. Chen, E.Z., Chen, T., Sun, S.: MRI image reconstruction via learning optimization using neural odes. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI) (2020)

    Google Scholar 

  5. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations (2019)

    Google Scholar 

  6. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014)

    Google Scholar 

  7. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., Bengio, Y.: A recurrent latent variable model for sequential data. Neural Inf. Proces. Syst. (2015)

    Google Scholar 

  8. Cohen, O., Zhu, B., Rosen, M.S.: MR fingerprinting deep reconstruction network (drone). Magn. Resonan. Med. 80(3), 885–894 (2018)

    Article  Google Scholar 

  9. Durbin, J., Koopman, S.J.: Time Series Analysis By State Space Methods. Oxford University Press, Oxford (2012)

    Google Scholar 

  10. Erem, B., Coll-Font, J., Orellana, R., Stovicek, P., Brooks, D.: Using transmural regularization and dynamic modeling for noninvasive cardiac potential imaging of endocardial pacing with imprecise thoracic geometry. IEEE Trans. Med. Imag. 33, 726–738 (2014). https://doi.org/10.1109/TMI.2013.2295220

  11. Fang, Q., Boas, D.A.: Tetrahedral mesh generation from volumetric binary and grayscale images. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1142–1145. Ieee (2009)

    Google Scholar 

  12. Fey, M., Eric Lenssen, J., Weichert, F., Müller, H.: Splinecnn: fast geometric deep learning with continuous b-spline kernels. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 869–877 (2018)

    Google Scholar 

  13. Ghimire, S., Dhamala, J., Gyawali, P.K., Sapp, J.L., Horacek, M., Wang, L.: Generative modeling and inverse imaging of cardiac transmembrane potential. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 508–516. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_57

    Chapter  Google Scholar 

  14. Ghimire, S., Gyawali, P.K., Dhamala, J., Sapp, J.L., Horacek, M., Wang, L.: Improving generalization of deep networks for inverse reconstruction of image sequences. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 153–166. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_12

    Chapter  Google Scholar 

  15. Giffard-Roisin, S., et al.: Transfer learning from simulations on a reference anatomy for ECCI personalized cardiac resynchronization therapy. IEEE Trans. Biomed. Eng. 66(2), 343–353 (2018)

    Article  Google Scholar 

  16. Giffard-Roisin, S., et al.: Noninvasive personalization of a cardiac electrophysiology model from body surface potential mapping. IEEE Trans. Biomed. Eng. 64(9), 2206–2218 (2016)

    Article  Google Scholar 

  17. Jiang, X., Ghimire, S., Dhamala, J., Li, Z., Gyawali, P.K., Wang, L.: Learning geometry-dependent and physics-based inverse image reconstruction. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 487–496. Springer, Berlin (2020). https://doi.org/10.1007/10704282

  18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Lai, K.W., Aggarwal, M., van Zijl, P., Li, X., Sulam, J.: Learned proximal networks for quantitative susceptibility mapping. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI) (2020)

    Google Scholar 

  20. Lindstrom, P., Turk, G.: Fast and memory efficient polygonal simplification. In: Proceedings Visualization’98 (Cat. No. 98CB36276), pp. 279–286. IEEE (1998)

    Google Scholar 

  21. Plonsey, R.: Bioelectr. Phenomena. McGraw Hill, New York (1969)

    Google Scholar 

  22. Rubanova, Y., Chen, R.T., Duvenaud, D.: Latent odes for irregularly-sampled time series. arXiv preprint arXiv:1907.03907 (2019)

  23. Sapp, J.L., Dawoud, F., Clements, J.C., Horáček, B.M.: Inverse solution mapping of epicardial potentials: quantitative comparison with epicardial contact mapping. Circul. Arrhyth. Electrophysiol. 5(5), 1001–1009 (2012)

    Google Scholar 

  24. Stewart, R., Ermon, S.: Label-free supervision of neural networks with physics and domain knowledge. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  25. Ulas, C., et al.: Direct estimation of pharmacokinetic parameters from DCE-MRI using deep cnn with forward physical model loss. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 39–47. Springer (2018)

    Google Scholar 

  26. Wang, L., Zhang, H., Wong, K.C., Liu, H., Shi, P.: Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials. IEEE Trans. Biomed. Eng. 57(2), 296–315 (2009)

    Article  Google Scholar 

  27. Yang, Y., Sun, J., Li, H., Xu, Z.: Deep admm-net for compressive sensing MRI. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 10–18 (2016)

    Google Scholar 

  28. Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487–492 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Institutes of Health (NIH) under Award Number R01HL145590 and R01NR018301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiajun Jiang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2007 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, X. et al. (2021). Label-Free Physics-Informed Image Sequence Reconstruction with Disentangled Spatial-Temporal Modeling. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics