Skip to main content

Soluble Guanylyl Cyclase Alpha1 Subunit as a Biomarker of Toxicity: Applications to Investigate Endocrine-Disrupting Chemicals

  • Living reference work entry
  • First Online:
Biomarkers in Toxicology

Abstract

Endocrine-disrupting chemicals (EDCs) are a growing group of naturally occurring and synthetic substances in the environment that negatively impacts human and wildlife health. Most persist in water and soil for many years, being able to bioaccumulate and act at very low doses. Xenoestrogens, a subgroup of EDCs, can mimic estrogen actions directly related with endocrine disorders and cancer. Identification and characterization of these compounds by several toxicity assays are increasingly important. The present work discusses current detection methods of estrogen-like activities of EDCs and reviews the advantages of including new markers of exposure such as soluble guanylyl cyclase alpha1 subunit (sGCα1) in in vitro assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

E2:

17β-estradiol

EDC:

Endocrine-disrupting chemicals

ER:

Estrogen receptor

ERE:

Estrogen-response element

ERα:

Estrogen receptor alpha

ERβ:

Estrogen receptor beta

IGF-1R:

Insulin growth factor 1 receptor

NO:

Nitric oxide

sGC:

Nitric oxide-sensitive or soluble guanylyl cyclase

sGCα1:

Soluble guanylyl cyclase alpha1 subunit

VTG:

Vitellogenin

XE:

Xenoestrogens

References

  • Abdi F, Rahnemaei FA, Roozbeh N, Pakzad R. Impact of phytoestrogens on treatment of urogenital menopause symptoms: a systematic review of randomized clinical trials. Eur J Obstet Gynecol Reprod Biol. 2021;261:222–35.

    Article  CAS  PubMed  Google Scholar 

  • Bartiromo L, Schimberni M, et al. Endometriosis and phytoestrogens: friends or foes? A systematic review. Nutrients. 2021;13:2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benagiano M, Bianchi P, D’Elios MM, et al. Autoimmune diseases: role of steroid hormones. Best Pract Res Clin Obstet Gynaecol. 2019;60:24–34.

    Article  PubMed  Google Scholar 

  • Bernatoniene J, Kazlauskaite JA, Kopustinskiene DM. Pleiotropic effects of isoflavones in inflammation and chronic degenerative diseases. Int J Mol Sci. 2021;22:5656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breen MS, Breen M, et al. Computational model of steroidogenesis in human H295R cells to predict biochemical response to endocrineactive chemicals: model development for metyrapone. Environ Health Perspect. 2010;118:265–72.

    Article  CAS  PubMed  Google Scholar 

  • Budworth J, Meillerais S, Charles I, Powell K. Tissue distribution of the human soluble guanylate cyclases. Biochem Biophys Res Commun. 1999;263:696–701.

    Article  CAS  PubMed  Google Scholar 

  • Bulbring E, Burn JH. The estimation of oestrin and of male hormone in oily solution. J Physiol. 1935;85:320–33. &28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabilla JP, Diaz MC, Machiavelli LI, et al. 17 beta-estradiol modifies nitric oxide-sensitive guanylyl cyclase expression and down-regulates its activity in rat anterior pituitary gland. Endocrinology. 2006;147:4311–8.

    Article  CAS  PubMed  Google Scholar 

  • Cabilla JP, Ronchetti SA, Nudler SI, et al. Nitric oxide sensitive-guanylyl cyclase subunit expression changes during estrous cycle in anterior pituitary glands. Am J Physiol Endocrinol Metab. 2009;296:E731–7.

    Article  CAS  PubMed  Google Scholar 

  • Cabilla JP, Nudler SI, Ronchetti SA, et al. Nitric oxide-sensitive guanylyl cyclase is differentially regulated by nuclear and non-nuclear estrogen pathways in anterior pituitary gland. PLoS One. 2011;6:e29402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai C, Chen SY, Zheng Z, et al. Androgen regulation of soluble guanylyl cyclasealpha1 mediates prostate cancer cell proliferation. Oncogene. 2007;26:1606–15.

    Article  CAS  PubMed  Google Scholar 

  • Cai C, Hsieh CL, Gao S, et al. Soluble guanylyl cyclase α1 and p53 cytoplasmic sequestration and down-regulation in prostate cancer. Mol Endocrinol. 2012;26:292–307.

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Liu M, Zhao SJ, Jiang SW. Phytoestrogens for the management of endometriosis: findings and issues. Pharmaceuticals (Basel). 2021;14:569.

    Article  CAS  Google Scholar 

  • Chamkasem A, Toniti W. Sequence to structure approach of estrogen receptor alpha and ligand interactions. Asian Pac J Cancer Prev. 2015;16(6):2161–6.

    Article  PubMed  Google Scholar 

  • Christensen BC, Marsit CJ. Epigenomics in environmental health. Front Genet. 2011;2:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado NTB, Rouver WN, Dos Santos RL. Protective effects of pomegranate in endothelial dysfunction. Curr Pharm Des. 2020;26:3684–99.

    Article  CAS  PubMed  Google Scholar 

  • Derbyshire ER, Marletta MA. Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem. 2012;81:533–59.

    Article  CAS  PubMed  Google Scholar 

  • Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, et al. Endocrine-disrupting chemicals: an Endocrine Society Scientific Statement. Endocr Rev. 2009;30:293–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorfman RI, Gallagher TF, Koch FC. The nature of the estrogenic substance in human male urine and bull testis. Endocrinology. 1936;19:33–41.

    Article  Google Scholar 

  • EDSTAC. Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) final report. U.S. Environmental Protection Agency. Washington, DC. 1998.

    Google Scholar 

  • Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol. 2019;116:135–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazdar AF, Oie HK, Shackleton CH, Chen TR, Triche TJ, Myers CE, Chrousos GP, Brennan MF, Stein CA, La Rocca RV. Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res. 1990;50(17):5488–96.

    Google Scholar 

  • Gea M, Toso A, Schilirò T. Estrogenic activity of biological samples as a biomarker. Sci Total Environ. 2020;740:140050. https://doi.org/10.1016/j.scitotenv.2020.140050

  • Gore AC, Chappell VA, Fenton SE, et al. EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36:e1–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JM, McDonnell DP, Korach KS. Allosteric regulation of estrogen receptor structure, function, and coactivator recruitment by different estrogen response elements. Mol Endocrinol. 2002;16:469–86.

    Article  CAS  PubMed  Google Scholar 

  • Hecker M, Newsted JL, Murphy MB, et al. Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis: hormone production. Toxicol Appl Pharmacol. 2006;217:114–24.

    Article  CAS  PubMed  Google Scholar 

  • Heindel JJ, Blumberg B, Cave M, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68:3–33.

    Article  CAS  PubMed  Google Scholar 

  • Higley EB, Newsted JL, Zhang X, et al. Assessment of chemical effects on aromatase activity using the H295R cell line. Environ Sci Pollut Res. 2010;17:1137–48.

    Article  CAS  Google Scholar 

  • Holloway AC, Anger DA, Crankshaw DJ, et al. Atrazine-induced changes in aromatase activity in estrogen sensitive target tissues. J Appl Toxicol. 2008;28:260–70.

    Article  CAS  PubMed  Google Scholar 

  • Human Protein Atlas. Available from http://www.proteinatlas.org. Accessed 14 Aug 2021.

  • Ikeda K, Horie-Inoue K, Inoue S. Identification of estrogen-responsive genes based on the DNA binding properties of estrogen receptors using high-throughput sequencing technology. Acta Pharmacol Sin. 2015;36:24–31.

    Article  CAS  PubMed  Google Scholar 

  • Jones RC, Edgren RA. The effects of various steroid on the vaginal histology in the rat. Fertil Steril. 1973;24:284–91.

    Article  CAS  PubMed  Google Scholar 

  • Kabir ER, Rahman MS, Rahman I. A review on endocrine disruptors and their possible impacts on human health. Environmental Toxicology and Pharmacology. 2015;40(1):241–258. https://doi.org/10.1016/j.etap.2015.06.009

  • Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: molecular mechanisms of action. Environ Int. 2015;83:11–40.

    Article  CAS  PubMed  Google Scholar 

  • Koglin M, Vehse K, et al. Nitric oxide activates the β2 subunit of soluble guanylyl cyclase in the absence of a second subunit. J Biol Chem. 2001;276:30737–43.

    Article  CAS  PubMed  Google Scholar 

  • Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 1997;138:863–70.

    Article  CAS  PubMed  Google Scholar 

  • La Merrill MA, Vandenberg LN, Smith MT, et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol. 2020;16(1):45–57.

    Article  PubMed  CAS  Google Scholar 

  • Levine AB, Punihaole D, Levine TB. Characterization of the role of nitric oxide and its clinical applications. Cardiology. 2012;122:55–68.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Luh CJ, Burns KA, et al. Endocrine-disrupting chemicals (EDCs): in vitro mechanism of estrogenic activation and differential effects on ER target genes. Environ Health Perspect. 2013;121:459–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Wang Y, Wei P, Shi D, Wen S, Wu F, Liu L, Ye N, Zhou H. Bisphenol A affects trophoblast invasion by inhibiting CXCL8 expression in decidual stromal cells. Molecular and Cellular Endocrinology. 2018;47038–47. https://doi.org/10.1016/j.mce.2017.07.016

  • Litvinova L, Atochin DN, Fattakhov N, et al. Nitric oxide and mitochondria in metabolic syndrome. Front Physiol. 2015;6:20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marro ML, Peiró C, Panayiotou CM, et al. Characterization of the human alpha1 beta1 soluble guanylyl cyclase promoter: key role for NF-kappaB(p50) and CCAAT-binding factors in regulating expression of the nitric oxide receptor. J Biol Chem. 2008;283:20027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin E, Golunski E. Alternative splicing impairs soluble guanylyl cyclase function in aortic aneurysm. Am J Physiol Heart Circ Physiol. 2014;307:H1565–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin MB, Reiter R, Pham T, et al. Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology. 2003;144:2425–36.

    Article  CAS  PubMed  Google Scholar 

  • McGinity CL, Palmieri EM, Somasundaram V, et al. Nitric oxide modulates metabolic processes in the tumor immune microenvironment. Int J Mol Sci. 2021;22:7068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrheim J, Villegas J, Van Wassenhove J, et al. Estrogen, estrogen-like molecules and autoimmune diseases. Autoimmun Rev. 2020;19:102468.

    Article  CAS  PubMed  Google Scholar 

  • Mitchner NA, Garlick C, Ben-Jonathan N. Cellular distribution and gene regulation of estrogen receptorsαandβ in the rat pituitary gland. Endocrinology. 1998;139:3976–83.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadoo-Khorasani M, Karami Tehrani F, Parizadeh SMR, Atri M. Differential expression of alternative transcripts of soluble guanylyl cyclase, GYCY1a3 and GUCY1b3 genes, in the malignant and benign breast tumors. Nitric Oxide. 2019;83:65–71.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadoo-Khorasani M, Karami Tehrani F, Atri M. Soluble guanylate cyclase isoenzymes: the expression of α1, α2, β1, and β2 subunits in the benign and malignant breast tumors. J Cell Physiol. 2020;235:1358–65.

    Article  CAS  PubMed  Google Scholar 

  • Montfort WR, Wales JA, Weichsel A. Structure and activation of soluble guanylyl cyclase, the nitric oxide sensor. Antioxid Redox Signal. 2017;26:107–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papalou O, Kandaraki EA, Papadakis G, Diamanti-Kandarakis E. Endocrine disrupting chemicals: an occult mediator of metabolic disease. Front Endocrinol (Lausanne). 2019;1:112.

    Article  Google Scholar 

  • Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F. Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids. 2014;90:13–29.

    Article  CAS  PubMed  Google Scholar 

  • Paterni I, Granchi C, Minutolo F. Risks and benefits related to alimentary exposure to xenoestrogens. Crit Rev Food Sci Nutr. 2017;57:3384–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penot G, Le Peron C, Mérot Y, et al. The human estrogen receptor-alpha isoform hERalpha46 antagonizes the proliferative influence of hERalpha66 in MCF7 breast cancer cells. Endocrinology. 2005;146:5474–84.

    Article  CAS  PubMed  Google Scholar 

  • Pino MTL, Ronchetti SA, Cordeiro G, Bollani S, Duvilanski BH, Cabilla JP. Soluble guanylyl cyclase alpha1 subunit: a new marker for estrogenicity of endocrine disruptor compounds. Environmental Toxicology and Chemistry. 2019;38(12):2719–2728. https://doi.org/10.1002/etc.4591

  • Prossnitz ER, Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol. 2011;7:715–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainey WE, Bird IM, Sawetawan C, Hanley NA, McCarthy JL, McGee EA, Wester R, Mason JI. Regulation of human adrenal carcinoma cell (NCI-H295) production of C19 steroids.. The Journal of Clinical Endocrinology & Metabolism. 1993;77(3):731–737. https://doi.org/10.1210/jcem.77.3.8396576

  • Ranganathan P, Nadig N, Nambiar S. Non-canonical estrogen signaling in endocrine resistance. Front Endocrinol. 2019;10:1–8.

    Article  Google Scholar 

  • Reel JR, Lamb JC IV, Neal BH. Survey and assessment of mammalian estrogen biological assays for hazard characterization. Fundam Appl Toxicol. 1996;34:288–305.

    Article  CAS  PubMed  Google Scholar 

  • Rissman EF, Adli M. Minireview: transgenerational epigenetic inheritance: focus on endocrine disrupting compounds. Endocrinology. 2014;155:2770–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ronchetti SA, Novack GV, Bianchi MS, et al. In vivo xenoestrogenic actions of cadmium and arsenic in anterior pituitary and uterus. Reproduction. 2016;152:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Ronchetti SA, Pino MTL, Cordeiro G, et al. Soluble guanylyl cyclase α1 subunit is a key mediator of proliferation, survival, and migration in ECC-1 and HeLa cell lines. Sci Rep. 2019;9:14797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanderson JT, Boerma J, Lansbergen GWA, van den Berg M. Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells. Toxicology and Applied Pharmacology. 2002;182(1):44–54. https://doi.org/10.1006/taap.2002.9420

  • Schaap P. Guanylyl cyclases across the tree of life. Front Biosci. 2005;10:1485–98.

    Article  CAS  PubMed  Google Scholar 

  • Sharina IG, Cote GJ, Martin E, et al. RNA splicing in regulation of nitric oxide receptor soluble guanylyl cyclase. Nitric Oxide. 2011;25:265–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva H. The vascular effects of isolated isoflavones-a focus on the determinants of blood pressure regulation. Biology (Basel). 2021;10:49.

    CAS  Google Scholar 

  • Słupski W, Jawień P, Nowak B. Botanicals in postmenopausal osteoporosis. Nutrients. 2021;13:1609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • U.S. EPAa (U.S. Environmental Protection Agency). Endocrine disruptor screening program test guidelines – OPPTS 890.1250: Estrogen Receptor Binding Assay Using Rat Uterine Cytosol (ER-RUC) [EPA 740-C-09-005]. 2009. https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0576-0005. Accessed 1 Sept 2021.

  • U.S. EPAb (U.S. Environmental Protection Agency) Endocrine disruptor screening program test guidelines – OPPTS 890.1300: Estrogen Receptor Transcriptional Activation (Human Cell Line (HeLa-9903)) [EPA 740-C-09-006]. 2009. https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0576-0006. Accessed 1 Sept 2021.

  • U.S. EPAc (U.S. Environmental Protection Agency). Endocrine disruptor screening program test guidelines – OPPTS 890.1550: Steroidogenesis (Human Cell line – H295R) [EPA 640-C-09-003]. 2009. https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0576-0011. Accessed 1 Sept 2021.

  • U.S. EPAd (U.S. Environmental Protection Agency). Endocrine disruptor screening program test guidelines – OPPTS 890.1600: Uterotrophic Assay [EPA 740-C-09-0010]. 2009. https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0576-0012. Accessed 1 Sept 2021.

  • U.S. EPAe (U.S. Environmental Protection Agency). Endocrine disruptor screening program test guidelines – OPPTS 890.1450: Pubertal Development and Thyroid Function in Intact Juvenile/Peripubertal Female Rats [EPA 740-C-09-009]. 2009. https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0576-0009. Accessed 1 Sept 2021.

  • U.S. EPAf (U.S. Environmental Protection Agency). Endocrine disruptor screening program test guidelines – OPPTS 890.1350: Fish Short-Term Reproduction Assay [EPA 740-C-09-007]. 2009. https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0576-0007. Accessed 1 Sept 2021.

  • Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357(6352):eaan2507.

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg LN, Najmi A, Mogus JP. Agrochemicals with estrogenic endocrine disrupting properties: lessons learned? Mol Cell Endocrinol. 2020;518:110860.

    Article  CAS  PubMed  Google Scholar 

  • Varayoud J, Ramos JG, Monje L, et al. The estrogen receptor alpha sigma3 mRNA splicing variant is differentially regulated by estrogen and progesterone in the rat uterus. J Endocrinol. 2005;186:51–60.

    Article  CAS  PubMed  Google Scholar 

  • von Schoultz B, Carlström K, Collste L, et al. Estrogen therapy and liver function – metabolic effects of oral and parenteral administration. Prostate. 1989;14:389–95.

    Article  Google Scholar 

  • Wang Z, Zhang X, Shen P, et al. A variant of estrogen receptor-α, hER-α36: transduction of estrogen and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc Natl Acad Sci U S A. 2006;103:9063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Ha D, Yoshitake R, et al. Exploring the biological activity and mechanism of xenoestrogens and phytoestrogens in cancers: emerging methods and concepts. Int J Mol Sci. 2021;22:8798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler JR, Valverde-Garcia P, Crane M. Control performance of fish short term reproduction assays with fathead minnow (Pimephales promelas). Regul Toxicol Pharmacol. 2019;108:104424.

    Article  CAS  PubMed  Google Scholar 

  • WHO/UNEP (World Health Organization, United Nations Environment Programme), Inter-Organization Programme for the Sound Management of Chemicals, Bergman Å, Heindel JJ, et al. State of the science of endocrine disrupting chemicals 2012: summary for decision-makers. World Health Organization; 2013. https://apps.who.int/iris/handle/10665/78102. Accessed 1 Sept 2021.

    Google Scholar 

  • Wobst J, Schunkert H, Kessler T. Genetic alterations in the NO/cGMP pathway and cardiovascular risk. Nitric Oxide. 2018;76:105–12.

    Article  CAS  PubMed  Google Scholar 

  • Wright NJD. A review of the actions of Nitric Oxide in development and neuronal function in major invertebrate model systems. AIMS Neurosci. 2019;6:146–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaşar P, Ayaz G, User SD, et al. Molecular mechanism of estrogen-estrogen receptor signaling. Reprod Med Biol. 2017;16:4–20.

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Gao S, Hsieh CL, et al. Peptide B targets soluble guanylyl cyclase α1 and kills prostate cancer cells. PLoS One. 2017;12:e0184088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zoeller RT, Brown TR, Doan LL, et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from the Endocrine Society. Endocrinology. 2012;153:4097–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimena Paula Cabilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pino, M.T., Cabilla, J.P. (2022). Soluble Guanylyl Cyclase Alpha1 Subunit as a Biomarker of Toxicity: Applications to Investigate Endocrine-Disrupting Chemicals. In: Patel, V.B., Preedy, V.R., Rajendram, R. (eds) Biomarkers in Toxicology. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-87225-0_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87225-0_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87225-0

  • Online ISBN: 978-3-030-87225-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics