Skip to main content

Location, Orientation and Buoyance Effects of Radical Probes as Studied by EPR

  • Chapter
  • First Online:
Lipid Oxidation in Food and Biological Systems

Abstract

When measuring antioxidant activities in micelles and emulsions, the location of the antioxidant or of the probe has long been recognized as an important issue. The present chapter represents one step further in these studies, by drawing attention to the importance of the proximity between the interacting centers of a probe/antioxidant pair, even when the two species are located in the same or in similar environments. The use of 4-alkanoyloxy-1,1,6,6-tetramethylpyperidineoxyl (TEMPO) radicals as probes for AOs in micellar systems or emulsions, reveals cut-off patterns that suggest a novel interpretation of the polar paradox, based on the orientation of the probe and/or AO in these systems. Changes in orientation in a micro-heterogeneous medium are associated with structural features of these molecules, and with their amphiphobic character. These molecules are characterized by possessing two end-groups of variable lipophilicity. In a heterogeneous interface, a competition is established between these groups for the hydrophobic core of a micelle or emulsion droplet, leading to distinct orientations and degrees of insertion into the lipophilic core. The whole process is adequately described by a schematic depiction, the “diving-swan” analogy. Examples from the literature of this process and of cut-off patterns of behavior for various AOs in micro-heterogeneous systems are presented and discussed. They give support to this approach, originally developed from observations with the behavior of the 4-substituted TEMPO derivatives as probes in these systems. As the polar paradox is a rather general phenomenon, encountered not only in the assessment of antioxidant activities in food extracts but also in a larger variety of biological systems, the present approach can find interesting applications in the future, in the analysis of this paradox in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmadi F, Kadivar M, Shahedi M (2007) Antioxidant activity of Kelussia odoratissima Mozaff. In model and food systems. Food Chem 105(1):57–64

    Article  CAS  Google Scholar 

  • Aliaga C, Rezende MC, Arenas A (2009a) How meaningful is the assessment of antioxidant activities in microheterogeneous media? Food Chem [Internet] 113(4):1083–1087

    Article  CAS  Google Scholar 

  • Aliaga C, Rezende MC, Arenas A (2009b) How meaningful is the assessment of antioxidant activities in microheterogeneous media? Food Chem 113(4):1083–1087

    Article  CAS  Google Scholar 

  • Aliaga C, Torres P, Silva F (2012) A simple method for the determination of the partitioning of nitroxide probes in microheterogeneous media. Magn Reson Chem 50(12):779–783

    Article  CAS  PubMed  Google Scholar 

  • Aliaga C, Bravo-Moraga F, Gonzalez-Nilo D, Márquez S, Lühr S, Mena G et al (2016a) Location of TEMPO derivatives in micelles: subtle effect of the probe orientation. Food Chem 192:395–401

    Article  CAS  PubMed  Google Scholar 

  • Aliaga C, Rezende C, Mena G (2016b) The effect of micellization on the EPR spectra tetramethylpiperidinoxyl (TEMPO) radicals. Magn Reson Chem 54(11):870–873

    Article  CAS  PubMed  Google Scholar 

  • Aliaga C, Lopez de Arbina A, Rezende MC (2016c) “Cut-off” effect of antioxidants and/or probes of variable lipophilicity in microheterogeneous media. Food Chem 206:119–123

    Article  CAS  PubMed  Google Scholar 

  • Aliaga C, López de Arbina A, Pastenes C, Rezende MC (2018) Antioxidant-spotting in micelles and emulsions. Food Chem 245:240–245

    Article  CAS  PubMed  Google Scholar 

  • Almajano MP, Carbó R, Jiménez JAL, Gordon MH (2008) Antioxidant and antimicrobial activities of tea infusions. Food Chem 108(1):55–63

    Article  CAS  Google Scholar 

  • Aspée A, Aliaga C, Maretti L, Zúñiga-Núñez D, Godoy J, Pino E et al (2017) Reaction kinetics of phenolic antioxidants toward Photoinduced Pyranine free radicals in biological models. J Phys Chem B 121(26):6331–6340

    Article  PubMed  Google Scholar 

  • Balgavý P, Devínsky F (1996) Cut-off effects in biological activities of surfactants. Adv Colloid Interf Sci 66:23–63

    Article  Google Scholar 

  • Boroski M, Aguiar AC, Rotta EM, Bonafe EG, Valderrama P, Souza NE et al (2018) Antioxidant activity of herbs and extracted phenolics from oregano in canola oil. Int Food Res J 25(6):2444–2452

    CAS  Google Scholar 

  • Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2017) Physical evidence that the variations in the efficiency of homologous series of antioxidants in emulsions are a result of differences in their distribution. J Sci Food Agric 97(2):564–571

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Losada-Barreiro S, Bravo-Díaz C, Vicente AA, Monteiro LS, Paiva-Martins F (2020) Influence of AO chain length, droplet size and oil to water ratio on the distribution and on the activity of gallates in fish oil-in-water emulsified systems: emulsion and nanoemulsion comparison. Food Chem 310:125716–125723

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Mcclements DJ, Decker EA (2015) Impact of phosphatidylethanolamine on the antioxidant activity of α-tocopherol and trolox in bulk oil. J Agric Food Chem 63(12):3288–3294

    Article  CAS  PubMed  Google Scholar 

  • Dar AA, Bravo-Diaz C, Nazir N, Romsted LS (2017) Chemical kinetic and chemical trapping methods: unique approaches for determining respectively the antioxidant distributions and interfacial molarities of water, counter-anions, and other weakly basic nucleophiles in association colloids. Curr Opin Colloid Int Sci 32:84–93

    Article  CAS  Google Scholar 

  • Durand E, Zhao Y, Ruesgas-Ramón M, Figueroa-Espinoza MC, Lamy S, Coupland JN et al (2019) Evaluation of antioxidant activity and interaction with radical species using the vesicle conjugated Autoxidizable Triene (VesiCAT) assay. Eur J Lipid Sci Technol 121(5):1–8

    Article  Google Scholar 

  • Fabris S, Momo F, Ravagnan G, Stevanato R (2008) Antioxidant properties of resveratrol and piceid on lipid peroxidation in micelles and monolamellar liposomes. Biophys Chem 135(1–3):76–83

    Article  CAS  PubMed  Google Scholar 

  • Ferreira I, Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2018) Modulating the interfacial concentration of gallates to improve the oxidative stability of fish oil-in-water emulsions. Food Res Int 112:192–198

    Article  CAS  PubMed  Google Scholar 

  • Freiría-Gándara J, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2018) Enhancement of the antioxidant efficiency of gallic acid derivatives in intact fish oil-in-water emulsions through optimization of their interfacial concentrations. Food Funct 9(8):4429–4442

    Article  PubMed  Google Scholar 

  • González MJ, Medina I, Maldonado OS, Lucas R, Morales JC (2015) Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: relevance of their surface active properties and of the type of emulsifier. Food Chem 183:190–196

    Article  PubMed  Google Scholar 

  • Keller S, Locquet N, Cuvelier ME (2016) Partitioning of vanillic acid in oil-in-water emulsions: impact of the tween®40 emulsifier. Food Res Int 88:61–69

    Article  CAS  PubMed  Google Scholar 

  • Krudopp H, Sönnichsen FD, Steffen-Heins A (2015) Partitioning of nitroxides in dispersed systems investigated by ultrafiltration, EPR and NMR spectroscopy. J Colloid Interface Sci 452:15–23

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Chauhan PK, Bhardwaj VS, Kumar R, Tyagi A (2011) In vitro antioxidant & phytochemical investigations of ethanolic extracts of viola serpens & morus nigrav. J Chem Pharm Res 3(4):166–171

    CAS  Google Scholar 

  • Kusumahastuti DKA, Sihtmäe M, Kapitanov IV, Karpichev Y, Gathergood N, Kahru A (2019) Toxicity profiling of 24 L-phenylalanine derived ionic liquids based on pyridinium, imidazolium and cholinium cations and varying alkyl chains using rapid screening Vibrio fischeri bioassay. Ecotoxicol Environ Saf 172:556–565

    Article  CAS  PubMed  Google Scholar 

  • Laguerre M, López Giraldo LJ, Lecomte J, Figueroa-Espinoza M-C, Baréa B, Weiss J et al (2009) Chain length affects antioxidant properties of Chlorogenate esters in emulsion: the cutoff theory behind the polar paradox. J Agric Food Chem 57(23):11335–11342

    Article  CAS  PubMed  Google Scholar 

  • Lopez de Arbina A, Losada-Barreiro S, Rezende MC, Vidal M, Aliaga C (2019) The location of amphiphobic antioxidants in micellar systems: the diving-swan analogy. Food Chem 279:288–293

    Article  CAS  PubMed  Google Scholar 

  • López-Alarcón C, Aspée A, Henríquez C, Campos AM, Lissi EA (2005) Interaction and reactivity of urocanic acid towards peroxyl radicals. Redox Rep 10(4):227–234

    Article  PubMed  Google Scholar 

  • Losada-Barreiro S, Sova M, Mravljak J, Saso L, Bravo-Díaz C (2020) Synthesis, in vitro antioxidant properties and distribution of a new cyanothiophene-based phenolic compound in olive oil-in-water emulsions. Antioxidants 9(7):1–16

    Article  Google Scholar 

  • Lue BM, Sørensen ADM, Jacobsen C, Guo Z, Xu X (2017) Antioxidant efficacies of rutin and rutin esters in bulk oil and oil-in-water emulsion. Eur J Lipid Sci Technol 119(4):1–15

    Article  Google Scholar 

  • Martinović N, Poklar Ulrih N, Abramovič H (2019) Sinapic acid and its derivatives increase oxidative stability in different model lipid systems. Eur J Lipid Sci Technol 121(4):1–10

    Article  Google Scholar 

  • Mateos R, Madrona A, Pereira-Caro G, Domínguez V, Cert RM, Parrado J et al (2015) Synthesis and antioxidant evaluation of isochroman-derivatives of hydroxytyrosol: structure-activity relationship. Food Chem 173:313–320

    Article  CAS  PubMed  Google Scholar 

  • Meireles M, Losada-Barreiro S, Costa M, Paiva-Martins F, Bravo-Díaz C, Monteiro LS (2019) Control of antioxidant efficiency of chlorogenates in emulsions: modulation of antioxidant interfacial concentrations. J Sci Food Agric 99(8):3917–3925

    Article  CAS  PubMed  Google Scholar 

  • Montoro P, Braca A, Pizza C, De Tommasi N (2005) Structure-antioxidant activity relationships of flavonoids isolated from different plant species. Food Chem 92(2):349–355

    Article  CAS  Google Scholar 

  • Mukai K, Ishikawa E, Ouchi A, Nagaoka S-I, Abe K, Suzuki T et al (2018 Jun 1) Measurements of singlet oxygen-quenching activity of vitamin E homologs and palm oil and soybean extracts in a micellar solution. Lipids 53(6):601–613

    Article  CAS  PubMed  Google Scholar 

  • Nogueira CCR, Paixão ICNDP, Teixeira VL (2014) Antioxidant activity of natural products isolated from red seaweeds. Nat Prod Commun 9(7):1031–1036

    CAS  PubMed  Google Scholar 

  • Noon J, Mills TB, Norton IT. The use of natural antioxidants to combat lipid oxidation in O/W emulsions. Journal of Food Engineering [Internet]. 2020; 281:110006–19. Available from: https://doi.org/10.1016/j.jfoodeng.2020.110006

  • Özcan MM, Al Juhaimi F, Ahmed IAM, Uslu N, Babiker EE, Ghafoor K (2020) Effect of microwave and oven drying processes on antioxidant activity, total phenol and phenolic compounds of kiwi and Pepino fruits. J Food Sci Technol 57(1):233–242

    Article  PubMed  Google Scholar 

  • Parmar A, Singh K, Bahadur A, Marangoni G, Bahadur P (2011) Interaction and solubilization of some phenolic antioxidants in Pluronic® micelles. Colloids Surf B: Biointerfaces 86(2):319–326

    Article  CAS  PubMed  Google Scholar 

  • Porter WL (1993) Paradoxical behavior of antioxidants in food and biological systems. Toxicol Ind Health 9(1–2):93–122

    Article  CAS  PubMed  Google Scholar 

  • Porter WL, Black ED, Drolet AM (1989) Use of polyamide oxidative fluorescence test on lipid emulsions: contrast in relative effectiveness of antioxidants in bulk versus dispersed systems. J Agric Food Chem 37(3):615–624

    Article  CAS  Google Scholar 

  • Raimúndez-Rodríguez EA, Losada-Barreiro S, Bravo-Díaz C (2019) Enhancing the fraction of antioxidants at the interfaces of oil-in-water emulsions: a kinetic and thermodynamic analysis of their partitioning. J Colloid Interface Sci 555:224–233

    Article  PubMed  Google Scholar 

  • Romsted LS, Zhang J (2004) Determining antioxidant distributions in model food emulsions: development of a new kinetic method based on the pseudophase model in micelles and opaque emulsions. Progr Colloid Polym Sci 123:182–187

    CAS  Google Scholar 

  • Shahidi F, Zhong Y (2011) Revisiting the polar paradox theory: a critical overview. J Agric Food Chem 59(8):3499–3504

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Du Z, Zhang C, Zhu L, Wang J, Wang J (2017) Acute toxicity of imidazole nitrate ionic liquids with varying chain lengths to earthworms (Eisenia foetida). Bull Environ Contam Toxicol 99(2):213–217

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Wang J, Du Z, Li B, Zhu L, Wang J (2018) Toxicity of 1-alkyl-3-methyl imidazolium nitrate ionic liquids to earthworms: the effects of carbon chains of different lengths. Chemosphere 206:302–309

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Wang J, Wang J, Du Z, Li B, Zhu L et al (2019) Oxidative stress and genotoxic effects in earthworms induced by five imidazolium bromide ionic liquids with different alkyl chains. Chemosphere 227:570–579

    Article  CAS  PubMed  Google Scholar 

  • Teixeira S, Siquet C, Alves C, Boal I, Marques MP, Borges F et al (2005) Structure-property studies on the antioxidant activity of flavonoids present in diet. Free Radic Biol Med 39(8):1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Thippeswamy TG, Vidyashree HK, Hemavathi, Kengaiah J (2020) Antioxidant activity in methanolic extract of selected vegetables. Int J Pharm Pharm 17(2):151–160

    CAS  Google Scholar 

  • Wang YL, Wu C, Zhou XY, Zhang MR, Chen Y, Nie SP et al (2020) Combined application of gallate ester and α-tocopherol in oil-in-water emulsion: their distribution and antioxidant efficiency. J Dispers Sci Technol 41(6):909–917

    Article  CAS  Google Scholar 

  • Ye L, Pham-Mondala A, Li J, Joseph P, Nahas R, Michel-Salaun F (2019) Using confocal microscopy to estimate the distribution of natural antioxidants in poultry meal and extruded kibbles. Eur J Lipid Sci Technol 121(9):1–7

    Article  Google Scholar 

  • Yeşilyurt V, Halfon B, Öztürk M, Topçu G (2008) Antioxidant potential and phenolic constituents of Salvia cedronella. Food Chem 108(1):31–39

    Article  Google Scholar 

  • Zapata-Morin PA, Sierra-Valdez FJ, Ruiz-Suárez JC (2020) The cut-off effect of n-alcohols in lipid rafts: a lipid-dependent phenomenon. J Mol Graph Model 101:1–7

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are given to FONDECYT 1200192 project and Basal financing AFB180001 (CEDENNA). Special thanks to our student Mg. Amaia López de Arbina and Ms. Camila Pastenes for their helpful and devoted labwork done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Aliaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aliaga, C., Rezende, M.C. (2022). Location, Orientation and Buoyance Effects of Radical Probes as Studied by EPR. In: Bravo-Diaz, C. (eds) Lipid Oxidation in Food and Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-87222-9_6

Download citation

Publish with us

Policies and ethics