Skip to main content

Phytosterols as Functional Compounds and Their Oxidized Derivatives

  • Chapter
  • First Online:
Lipid Oxidation in Food and Biological Systems

Abstract

Plant sterols, also called phytosterols, are plant-derived compounds that structurally and functionally resemble cholesterol in mammals. These compounds are known to lower the total and low-density lipoprotein (LDL-C) fractions of cholesterol in humans. For a number of decades, various food products have been enriched with phytosterols and phytostanols as free compounds, or as their esters with fatty acids. The quality of the raw material, as well as the conditions of food processing and storage, affects the degradation of phytosterols and the formation of the various derivatives. The speed at which they degrade in model systems, as well as in raw materials and food products, is associated with autoxidation and photooxidation reactions. Phytosterol oxidation products (POPs) are derivatives formed during thermo-oxidation of sterols; they then undergo decomposition to volatile compounds and oligomers. The toxic properties of POPs in humans have been demonstrated, and their biological properties are based on literature data. The chemical structure of phytosterols, their biological properties, and their content in food products are presented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adcox C, Boyd L, Oehrl L, Allen J, Fenner G (2001) Comparative effects of phytosterol oxides and cholesterol oxides in cultured macrophage-derived cell lines. J Agric Food Chem 49(4):2090–2095

    Article  CAS  PubMed  Google Scholar 

  • Alemany L, Laparra JM, Barberá R, Alegría A (2013) Relative expression of cholesterol transport-related proteins and inflammation markers through the induction of 7-ketosterol-mediated stress in Caco-2 cells. Food Chem Toxicol [Internet] 56:247–253. Available from https://doi.org/10.1016/j.fct.2013.02.040

  • Alvarez-Sala A, Blanco-Morales V, Cilla A, Garcia-Llatas G, Sánchez-Siles LM, Barberá R et al (2018) Safe intake of a plant sterol-enriched beverage with milk fat globule membrane: bioaccessibility of sterol oxides during storage. J Food Compos Anal [Internet] 68:111–117. Available from https://doi.org/10.1016/j.jfca.2017.03.011

  • Awad AB, Smith AJ, Fink CS (2001) Plant sterols regulate rat vascular smooth muscle cell growth and prostacyclin release in culture. Prostaglandins Leukot Essent Fatty Acids 64(6):323–330

    Article  CAS  PubMed  Google Scholar 

  • Azadmard-Damirchi S, Dutta PC (2008) Stability of minor lipid components with emphasis on phytosterols during chemical interesterification of a blend of refined olive oil and palm stearin. JAOCS J Am Oil Chem Soc 85(1):13–21

    Article  CAS  Google Scholar 

  • Azadmard-Damirchi S, Habibi-Nodeh F, Hesari J, Nemati M, Achachlouei BF (2010) Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chem [Internet] 121(4):1211–1215. Available from https://doi.org/10.1016/j.foodchem.2010.02.006

  • Barriuso B, Otaegui-Arrazola A, Menéndez-Carreño M, Astiasarán I, Ansorena D (2012) Sterols heating: degradation and formation of their ring-structure polar oxidation products. Food Chem [Internet] 135(2):706–712. Available from https://doi.org/10.1016/j.foodchem.2012.05.027

  • Barriuso B, Ansorena D, Poyato C, Astiasarán I, Ansorena D, Berger A et al (2014) Identification of fatty acid steryl esters in margarine and corn using direct flow injection ESI-MSn ion trap-mass spectrometry. J Agric Food Chem [Internet] 99(1):24–31. Available from https://doi.org/10.1016/j.biochi.2012.09.021

  • Barriuso B, Ansorena D, Poyato C, Astiasarán I (2015) Cholesterol and stigmasterol within a sunflower oil matrix: thermal degradation and oxysterols formation. Steroids [Internet] 99(PB):155–160. Available from https://doi.org/10.1016/j.steroids.2015.02.009

  • Baumgartner S, Mensink RP, De Smet E, Konings M, Fuentes S, de Vos WM et al (2017) Effects of plant stanol ester consumption on fasting plasma oxy(phyto)sterol concentrations as related to fecal microbiota characteristics. J Steroid Biochem Mol Biol 169:46–53

    Article  CAS  PubMed  Google Scholar 

  • Bortolomeazzi R, Cordaro F, Pizzale L, Conte LS (2003) Presence of phytosterol oxides in crude vegetable oils and their fate during refining. J Agric Food Chem 51(8):2394–2401

    Article  CAS  PubMed  Google Scholar 

  • Bosner MS, Lange LG, Stenson WF, Ostlund RE (1999) Percent cholesterol absorption in normal women and men quantified with dual stable isotopic tracers and negative ion mass spectrometry. J Lipid Res [Internet] 40(2):302–308. Available from https://doi.org/10.1016/S0022-2275(20)33370-8

  • Bradford PG, Awad AB (2010) Modulation of signal transduction in cancer cells by phytosterols. Biofactors 36(4):241–247

    Article  CAS  PubMed  Google Scholar 

  • Brauner R, Johannes C, Ploessl F, Bracher F, Lorenz RL (2012) Phytosterols reduce cholesterol absorption by inhibition of 27-hydroxycholesterol generation, liver X receptor α activation, and expression of the basolateral sterol exporter atp-binding cassette A1 in caco-2 enterocytes. J Nutr 142(6):981–989

    Article  CAS  PubMed  Google Scholar 

  • Cercaci L, Rodriguez-Estrada MT, Lercker G, Decker EA (2007) Phytosterol oxidation in oil-in-water emulsions and bulk oil. Food Chem 102(1):161–167

    Article  CAS  Google Scholar 

  • Chew SC, Tan CP, Nyam KL (2017) Comparative study of crude and refined kenaf (Hibiscus cannabinus L.) seed oil during accelerated storage. Food Sci Biotechnol 26(1):63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cioccoloni G, Soteriou C, Websdale A, Wallis L, Zulyniak MA, Thorne JL (2020) Phytosterols and phytostanols and the hallmarks of cancer in model organisms: a systematic review and meta-analysis. Crit Rev Food Sci Nutr [Internet] 1–21. Available from https://doi.org/10.1080/10408398.2020.1835820

  • Conchillo A, Cercaci L, Ansorena D, Rodriguez-Estrada MT, Lercker G, Astiasarán I (2005) Levels of phytosterol oxides in enriched and nonenriched spreads: application of a thin-layer chromatography-gas chromatography methodology. J Agric Food Chem 53(20):7844–7850

    Article  CAS  PubMed  Google Scholar 

  • Costa J, Amaral JS, Mafra I, Oliveira MBPP (2011) Refining of Roundup Ready® soya bean oil: effect on the fatty acid, phytosterol and tocopherol profiles. Eur J Lipid Sci Technol 113(4):528–535

    Article  CAS  Google Scholar 

  • da Costa PA, Ballus CA, Teixeira-Filho J, Godoy HT (2010) Phytosterols and tocopherols content of pulps and nuts of Brazilian fruits. Food Res Int [Internet] 43(6):1603–1606. Available from https://doi.org/10.1016/j.foodres.2010.04.025

  • Derewiaka D, Obiedziński M (2012) Phytosterol oxides content in selected thermally processed products. Eur Food Res Technol 234(4):703–712

    Article  CAS  Google Scholar 

  • Dierckx T, Bogie JFJ, Hendriks JJA (2018) The impact of phytosterols on the healthy and diseased brain. Curr Med Chem 26(37):6750–6765

    Article  Google Scholar 

  • Fernandez ML, Vega-López S (2005) Efficacy and safety of sitosterol in the management of blood cholesterol levels. Cardiovasc Drug Rev 23(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Gabay O, Sanchez C, Salvat C, Chevy F, Breton M, Nourissat G et al (2010) Stigmasterol: a phytosterol with potential anti-osteoarthritic properties. Osteoarthr Cartil [Internet] 18(1):106–16. Available from https://doi.org/10.1016/j.joca.2009.08.019

  • García-Llatas G, Rodríguez-Estrada MT (2011) Current and new insights on phytosterol oxides in plant sterol-enriched food. Chem Phys Lipids 164(6):607–624

    Article  PubMed  Google Scholar 

  • Gawrysiak-Witulska M, Rudzińska M (2012) Degradation of phytosterols during near-ambient drying of rapeseeds in a thick immobile layer. JAOCS J Am Oil Chem Soc 89(9)

    Google Scholar 

  • Gawrysiak-Witulska M, Rudzińska M, Wawrzyniak J, Siger A (2012) The effect of temperature and moisture content of stored rapeseed on the phytosterol degradation rate. JAOCS J Am Oil Chem Soc 89(9)

    Google Scholar 

  • Gawrysiak-Witulska M, Siger A, Rudzińska M, Stuper-Szablewska K, Rusinek R (2018) Effect of self-heating on the processing quality of rapeseed. Int Agrophys 32(3):313–323

    Article  Google Scholar 

  • Gawrysiak-Witulska M, Siger A, Rudzińska M, Bartkowiak-Broda I (2020) The effect of drying on the native tocopherol and phytosterol content of Sinapis alba L. seeds. J Sci Food Agric 100(1):354–361

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Savopoulos CG, Ahuja J, Hatzitolios AI (2011) Role of phytosterols in lipid-lowering: current perspectives. QJM 104(4):301–308

    Article  CAS  PubMed  Google Scholar 

  • Hovenkamp E, Demonty I, Plat J, Lütjohann D, Mensink RP, Trautwein EA (2008) Biological effects of oxidized phytosterols: a review of the current knowledge. Prog Lipid Res 47(1):37–49

    Article  CAS  PubMed  Google Scholar 

  • Hu PC, Chen BH (2002) Effects of riboflavin and fatty acid methyl esters on cholesterol oxidation during illumination. J Agric Food Chem 50(12):3572–3578

    Article  CAS  PubMed  Google Scholar 

  • Iuliano L (2011) Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem Phys Lipids [Internet] 164(6):457–468. Available from https://doi.org/10.1016/j.chemphyslip.2011.06.006

  • Jaceldo-Siegl K, Lütjohann D, Sirirat R, Mashchak A, Fraser GE, Haddad E (2017) Variations in dietary intake and plasma concentrations of plant sterols across plant-based diets among North American adults. Mol Nutr Food Res 61(8):1–10

    Article  Google Scholar 

  • Jiménez-Escrig A, Santos-Hidalgo AB, Saura-Calixto F (2006) Common sources and estimated intake of plant sterols in the Spanish diet. J Agric Food Chem 54(9):3462–3471

    Article  PubMed  Google Scholar 

  • Johnsson L, Dutta PC (2006) Determination of phytosterol oxides in some food products by using an optimized transesterification method. Food Chem 97(4):606–613

    Article  CAS  Google Scholar 

  • Julien-David D, Zhao M, Geoffroy P, Miesch M, Raul F, Aoude-Werner D et al (2014) Analysis of sitosteryl oleate esters in phytosterols esters enriched foods by HPLC-ESI-MS2. Steroids [Internet] 84:84–91. Available from https://doi.org/10.1016/j.steroids.2014.03.013

  • Kasim NS, Gunawan S, Yuliana M, Ju YH (2010) A simple two-step method for simultaneous isolation of tocopherols and free phytosterols from soybean oil deodorizer distillate with high purity and recovery. Sep Sci Technol 45(16):2437–2446

    Article  CAS  Google Scholar 

  • Kasprzak M, Rudzińska M, Przybylski R, Kmiecik D, Siger A, Olejnik A (2020) The degradation of bioactive compounds and formation of their oxidation derivatives in refined rapeseed oil during heating in model system. LWT 123

    Google Scholar 

  • Kaur R, Myrie SB (2020) Association of dietary phytosterols with cardiovascular disease biomarkers in humans. Lipids 55(6):569–584

    Article  CAS  PubMed  Google Scholar 

  • Kemmo S, Soupas L, Lampi AM, Piironen V (2005) Formation and decomposition of stigmasterol hydroperoxides and secondary oxidation products during thermo-oxidation. Eur J Lipid Sci Technol 107(11):805–814

    Article  CAS  Google Scholar 

  • Kenny O, O’Callaghan Y, O’Connell NM, McCarthy FO, Maguire AR, O’Brien NM (2012) Oxidized derivatives of dihydrobrassicasterol: cytotoxic and apoptotic potential in U937 and HepG2 cells. J Agric Food Chem 60(23):5952–5961

    Article  CAS  PubMed  Google Scholar 

  • Klingberg S, Ellegård L, Johansson I, Hallmans G, Weinehall L, Andersson H et al (2012) Inverse relation between dietary intake of naturally occurring plant sterols and serum cholesterol in northern Sweden (American Journal of Clinical Nutrition (2008) 87, (993-1001)). Am J Clin Nutr 96(3):680

    CAS  Google Scholar 

  • Kmiecik D, Fedko M, Rudzińska M, Siger A, Gramza-Michałowska A, Kobus-Cisowska J (2020) Thermo-oxidation of phytosterol molecules in rapeseed oil during heating: the impact of unsaturation level of the oil. Foods 10(1):50

    Article  PubMed Central  Google Scholar 

  • Lengyel J, Rimarčík J, Vagánek A, Fedor J, Lukeš V, Klein E (2012) Oxidation of sterols: energetics of C-H and O-H bond cleavage. Food Chem 133(4):1435–1440

    Article  CAS  Google Scholar 

  • Lin Y, Knol D, Menéndez-Carreño M, Blom WAM, Matthee J, Janssen HG et al (2016) Formation of plant sterol oxidation products in foods during baking and cooking using margarine without and with added plant sterol esters. J Agric Food Chem 64(3):653–662

    Article  CAS  PubMed  Google Scholar 

  • Luister A, Schött HF, Husche C, Schäfers HJ, Böhm M, Plat J et al (2015) Increased plant sterol deposition in vascular tissue characterizes patients with severe aortic stenosis and concomitant coronary artery disease. Steroids [Internet] 99(PB):272–280. Available from https://doi.org/10.1016/j.steroids.2015.03.011

  • Marangoni F, Poli A (2010) Phytosterols and cardiovascular health. Pharmacol Res [Internet] 61(3):193–199. Available from https://doi.org/10.1016/j.phrs.2010.01.001

  • Menéndez-Carreño M, Knol D, Janssen HG (2016) Development and validation of methodologies for the quantification of phytosterols and phytosterol oxidation products in cooked and baked food products. J Chromatogr A 1428:316–325

    Article  PubMed  Google Scholar 

  • Mildner-Szkudlarz S, Różańska M, Siger A, Kowalczewski PŁ, Rudzińska M (2019) Changes in chemical composition and oxidative stability of cold-pressed oils obtained from by-product roasted berry seeds. LWT 111:541–547

    Article  CAS  Google Scholar 

  • O’Callaghan Y, Kenny O, O’Connell NM, Maguire AR, McCarthy FO, O’Brien NM (2013) Synthesis and assessment of the relative toxicity of the oxidised derivatives of campesterol and dihydrobrassicasterol in U937 and HepG2 cells. Biochimie [Internet] 95(3):496–503. Available from https://doi.org/10.1016/j.biochi.2012.04.019

  • Oliveira L, Freire CSR, Silvestre AJD, Cordeiro N (2008) Lipophilic extracts from banana fruit residues: a source of valuable phytosterols. J Agric Food Chem 56(20):9520–9524

    Article  CAS  PubMed  Google Scholar 

  • Plat J, Mensink RP (2002) Increased intestinal ABCA1 expression contributes to the decrease in cholesterol absorption after plant stanol consumption. FASEB J 16(10):1248–1253

    Article  CAS  PubMed  Google Scholar 

  • Plat J, Theuwissen E, Husche C, Lütjohann D, Gijbels MJJ, Jeurissen M et al (2014) Oxidised plant sterols as well as oxycholesterol increase the proportion of severe atherosclerotic lesions in female LDL receptor+/- mice. Br J Nutr 111(1):64–70

    Article  CAS  PubMed  Google Scholar 

  • Plat J, Baumgartner S, Mensink RP (2015) Mechanisms underlying the health benefits of plant sterol and stanol ester consumption. J AOAC Int 98(3):697–700

    Article  CAS  PubMed  Google Scholar 

  • Poli G, Sottero B, Gargiulo S, Leonarduzzi G (2009) Cholesterol oxidation products in the vascular remodeling due to atherosclerosis. Mol Aspects Med [Internet] 30(3):180–189. Available from https://doi.org/10.1016/j.mam.2009.02.003

  • Przybylski R, Klensporf-Pawlik D, Anwar F, Rudzinska M (2009) Lipid components of North American wild rice (Zizania palustris). JAOCS J Am Oil Chem Soc 86(6)

    Google Scholar 

  • Raczyk M, Kmiecik D, Przybylski R, Rudzińska M (2017a) Effect of fatty acid unsaturation on phytosteryl ester degradation. JAOCS J Am Oil Chem Soc 94(5)

    Google Scholar 

  • Raczyk M, Kmiecik D, Schieberle P, Przybylski R, Jeleń H, Rudzińska M (2017b) Model studies on the formation of volatile compounds generated by a thermal treatment of steryl esters with different fatty acid moieties. Food Res Int 97

    Google Scholar 

  • Raczyk M, Bonte A, Matthäus B, Rudzińska M (2018a) Impact of added phytosteryl/phytostanyl fatty acid esters on chemical parameters of margarines upon heating and pan-frying. Eur J Lipid Sci Technol 120(2):1–11

    Article  Google Scholar 

  • Raczyk M, Paszel-Jaworska A, Rudzińska M (2018b) Cytotoxic activity of stigmasteryl esters and products of their thermo-oxidative degradation against drug sensitive and drug resistant human acute lymphoblastic leukemia cells. Acta Sci Pol Technol Aliment 17(1):11–18

    CAS  PubMed  Google Scholar 

  • Ramprasath VR, Awad AB (2015) Role of phytosterols in cancer prevention and treatment. J AOAC Int 98(3):735–738

    Article  CAS  PubMed  Google Scholar 

  • Ratusz K, Symoniuk E, Wroniak M, Rudzińska M (2018) Bioactive compounds, nutritional quality and oxidative stability of cold-pressed camelina (Camelina sativa L.) oils. Appl Sci 8(12):1–17

    Article  Google Scholar 

  • Rocha VZ, Ras RT, Gagliardi AC, Mangili LC, Trautwein EA, Santos RD (2016) Effects of phytosterols on markers of inflammation: a systematic review and meta-analysis. Atherosclerosis [Internet] 248:76–83. Available from https://doi.org/10.1016/j.atherosclerosis.2016.01.035

  • Rousková M, Heyberger A, Tøíska J, Krtièka M (2011) Extraction of phytosterols from tall oil soap using selected organic solvents. Chem Pap 65(6):805–812

    Article  Google Scholar 

  • Rubiś B, Paszel A, Kaczmarek M, Rudzińska M, Jeleń H, Rybczynska M (2008) Beneficial or harmful influence of phytosterols on human cells? Br J Nutr 100(6)

    Google Scholar 

  • Rudzińska M (2011) Products formed during thermo-oxidative degradation of sterols in model system and edible fats. Poznań University of Life Sciences, Poznań, 102 p

    Google Scholar 

  • Rudzińska M, Korczak J, Wąsowicz E (2005) Changes in phytosterols and their oxidation products during frying of french fries in rapeseed oil. Pol J Food Nutr Sci 14(4):381–387

    Google Scholar 

  • Rudzińska M, Przybylski R, Wa̧sowicz E (2009) Products formed during thermo-oxidative degradation of phytosterols. JAOCS J Am Oil Chem Soc 86(7)

    Google Scholar 

  • Rudzińska M, Przybylski R, Zhao YY, Curtis JM (2010) Sitosterol thermo-oxidative degradation leads to the formation of dimers, trimers and oligomers: a study using combined size exclusion chromatography/mass spectrometry. Lipids 45(6)

    Google Scholar 

  • Rudzińska M, Przybylski R, Wa̧sowicz E (2014) Degradation of phytosterols during storage of enriched margarines. Food Chem 142:294–298

    Article  PubMed  Google Scholar 

  • Ryan E, Chopra J, McCarthy F, Maguire AR, O’Brien NM (2005) Qualitative and quantitative comparison of the cytotoxic and apoptotic potential of phytosterol oxidation products with their corresponding cholesterol oxidation products. Br J Nutr 94(3):443–451

    Article  CAS  PubMed  Google Scholar 

  • Sanclemente T, Marques-Lopes I, Puzo J, García-Otín AL (2009) Role of naturally-occurring plant sterols on intestinal cholesterol absorption and plasmatic levels. J Physiol Biochem 65(1):87–98

    Article  CAS  PubMed  Google Scholar 

  • Sawadikiat P, Hongsprabhas P (2014) Phytosterols and γ-oryzanol in rice bran oils and distillates from physical refining process. Int J Food Sci Technol 49(9):2030–2036

    Article  CAS  Google Scholar 

  • Schmitz G, Langmann T, Heimerl S (2001) Role of ABCG1 and other ABCG family members in lipid metabolism. J Lipid Res [Internet] 42(10):1513–1520. Available from https://doi.org/10.1016/S0022-2275(20)32205-7

  • Scholz B, Menzel N, Lander V, Engel KH (2016) Heating two types of enriched margarine: complementary analysis of phytosteryl/phytostanyl fatty acid esters and phytosterol/phytostanol oxidation products. J Agric Food Chem 64(13):2699–2708

    Article  CAS  PubMed  Google Scholar 

  • Shahzad N, Khan W, Md S, Ali A, Saluja SS, Sharma S et al (2017) Phytosterols as a natural anticancer agent: current status and future perspective. Biomed Pharmacother 88:786–794

    Article  CAS  PubMed  Google Scholar 

  • Shuang R, Rui X, Wenfang L (2016) Phytosterols and dementia. Plant Foods Hum Nutr [Internet] 71(4):347–354. Available from https://doi.org/10.1007/s11130-016-0574-1

  • Siger A, Kaczmarek A, Rudzińska M (2015) Antioxidant activity and phytochemical content of cold-pressed rapeseed oil obtained from roasted seeds. Eur J Lipid Sci Technol 117(8)

    Google Scholar 

  • Sioen I, Matthys C, Huybrechts I, Van Camp J, De Henauw S (2011) Consumption of plant sterols in Belgium: consumption patterns of plant sterol-enriched foods in Flanders, Belgium. Br J Nutr 105(6):911–918

    Article  CAS  PubMed  Google Scholar 

  • Sosińska E, Przybylski R, Hazendonk P, Zhao YY, Curtis JM (2013) Characterisation of non-polar dimers formed during thermo-oxidative degradation of β-sitosterol. Food Chem 139(1–4):464–474

    Article  PubMed  Google Scholar 

  • Sosińska E, Przybylski R, Aladedunye F, Hazendonk P (2014) Spectroscopic characterisation of dimeric oxidation products of phytosterols. Food Chem 151:404–414

    Article  PubMed  Google Scholar 

  • Soupas L, Huikko L, Lampi AM, Piironen V (2007) Pan-frying may induce phytosterol oxidation. Food Chem 101(1):286–297

    Article  CAS  Google Scholar 

  • Tabee E, Jägerstad M, Dutta PC (2008) Lipids and phytosterol oxidation products in commercial potato crisps commonly consumed in Sweden. Eur Food Res Technol 227(3):745–755

    Article  CAS  Google Scholar 

  • Tomoyori H, Kawata Y, Higuchi T, Ichi I, Sato H, Sato M et al (2004) Erratum: Phytosterol oxidation products are absorbed in the intestinal lymphatics in rats but do not accelerate atherosclerosis in apolipoprotein E-deficient mice (Journal of Nutrition (2004) 134 (1690-1696)). J Nutr 134(10):2738

    Article  CAS  Google Scholar 

  • Van Hoed V, Ali CB, Slah M, Verhé R (2010) Quality differences between pre-pressed and solvent extracted rapeseed oil. Eur J Lipid Sci Technol 112(11):1241–1247

    Article  Google Scholar 

  • Vanmierlo T, Weingärtner O, Van Der Pol S, Husche C, Kerksiek A, Friedrichs S et al (2012) Dietary intake of plant sterols stably increases plant sterol levels in the murine brain. J Lipid Res 53(4):726–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vejux A, Montange T, Martine L, Zarrouk A, Riedinger JM, Lizard G (2012) Absence of oxysterol-like side effects in human monocytic cells treated with phytosterols and oxyphytosterols. J Agric Food Chem 60(16):4060–4066

    Article  CAS  PubMed  Google Scholar 

  • Vlahakis C, Hazebroek J (2000) Phytosterol accumulation in canola, sunflower, and soybean oils: effects of genetics, planting location, and temperature. JAOCS J Am Oil Chem Soc 77(1):49–53

    Article  CAS  Google Scholar 

  • Wang M, Lu B (2018) How do oxyphytosterols affect human health? Trends Food Sci Technol 79(April):148–159

    Article  CAS  Google Scholar 

  • Woyengo TA, Ramprasath VR, Jones PJH (2009) Anticancer effects of phytosterols. Eur J Clin Nutr 63:813–820

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Zhang L, Ma F, Zhang W, Wang X, Zhang Q et al (2018) Determination of free steroidal compounds in vegetable oils by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Food Chem [Internet] 245:415–425. Available from https://doi.org/10.1016/j.foodchem.2017.10.114

  • Yang M, Zheng C, Zhou Q, Huang F, Liu C, Wang H (2013a) Minor components and oxidative stability of cold-pressed oil from rapeseed cultivars in China. J Food Compos Anal [Internet] 29(1):1–9. Available from https://doi.org/10.1016/j.jfca.2012.08.009

  • Yang C, Chen ZY, Wong SL, Liu J, Liang YT, Lau CW et al (2013b) β-Sitosterol oxidation products attenuate vasorelaxation by increasing reactive oxygen species and cyclooxygenase-2. Cardiovasc Res 97(3):520–532

    Article  CAS  PubMed  Google Scholar 

  • Yang B-W, Lu B-Y, Zhao Y-J, Luo J-Y, Hong X (2020) Formation of phytosterol photooxidation products: a chemical reaction mechanism for light-induced oxidation. Food Chem [Internet] 333:127430. Available from https://doi.org/10.1016/j.foodchem.2020.127430

  • Ying Q, Wojciechowska P, Siger A, Kaczmarek A, Rudzińska M (2018) Phytochemical content, oxidative stability, and nutritional properties of unconventional cold-pressed edible oils. J Food Nutr Res 6(7):476–485

    Article  CAS  Google Scholar 

  • Zevenbergen H, De Bree A, Zeelenberg M, Laitinen K, Van Duijn G, Flöter E (2009) Foods with a high fat quality are essential for healthy diets. Ann Nutr Metab 54(suppl 1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Julien-David D, Miesch M, Geoffroy P, Raul F, Roussi S et al (2005) Identification and quantitative analysis of β-sitosterol oxides in vegetable oils by capillary gas chromatography-mass spectrometry. Steroids 70(13):896–906

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Yang B, Xu T, Wang M, Lu B (2019) Photooxidation of phytosterols in oil matrix: effects of the light, photosensitizers and unsaturation degree of the lipids. Food Chem 288:162–169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Centre, Poland, grant number 2018/31/B/NZ9/00602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Rudzińska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rudzińska, M. (2022). Phytosterols as Functional Compounds and Their Oxidized Derivatives. In: Bravo-Diaz, C. (eds) Lipid Oxidation in Food and Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-87222-9_16

Download citation

Publish with us

Policies and ethics