Skip to main content

Longitudinal Self-supervision to Disentangle Inter-patient Variability from Disease Progression

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12902))

Abstract

The problem of building disease progression models with longitudinal data has long been addressed with parametric mixed-effect models. They provide interpretable models at the cost of modeling assumptions on the progression profiles and their variability across subjects. Their deep learning counterparts, on the other hand, strive on flexible data-driven modeling, and additional interpretability - or, as far as generative models are involved, disentanglement of latent variables with respect to generative factors - comes from additional constraints. In this work, we propose a deep longitudinal model designed to disentangle inter-patient variability from an estimated disease progression timeline. We do not seek for an explicit mapping between age and disease stage, but to learn the latter solely from the ordering between visits using a differentiable ranking loss. Furthermore, we encourage inter-patient variability to be encoded in a separate latent space, where for each patient a single representation is learned from its set of visits, with a constraint of invariance under permutation of the visits. The modularity of the network architecture allows us to apply our model on various data types: a synthetic image dataset with known generative factors, cognitive assessments and neuroimaging data. We show that, combined with our patient encoder, the ranking loss for visits helps to exceed models with supervision, in particular in terms of disease staging.

R. Couronné and P. Vernhet—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berchuck, S.I., Mukherjee, S., Medeiros, F.A.: Estimating rates of progression and predicting future visual fields in glaucoma using a deep variational autoencoder. Sci. Rep. 9(1), 18113 (2019)

    Article  Google Scholar 

  2. Bigio, E., Hynan, L., Sontag, E., Satumtira, S., White, C.: Synapse loss is greater in presenile than senile onset Alzheimer disease: implications for the cognitive reserve hypothesis. Neuropathol. Appl. Neurobiol. 28(3), 218–227 (2002)

    Google Scholar 

  3. Blondel, M., Teboul, O., Berthet, Q., Djolonga, J.: Fast differentiable sorting and ranking. In: International Conference on Machine Learning, pp. 950–959. PMLR (2020). ISSN 2640–3498

    Google Scholar 

  4. Bône, A., Louis, M., Martin, B., Durrleman, S.: Deformetrica 4: an open-source software for statistical shape analysis. In: ShapeMI @ MICCAI 2018, Granada, Spain, November 2018 (2018). https://hal.inria.fr/hal-01874752

  5. Bouchacourt, D., Tomioka, R., Nowozin, S.: Multi-level variational autoencoder: learning disentangled representations from grouped observations. CoRR abs/1705.08841 (2017)

    Google Scholar 

  6. Bône, A., Colliot, O., Durrleman, S.: Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms, pp. 9271–9280 (2018)

    Google Scholar 

  7. Dalca, A.V., Rakic, M., Guttag, J., Sabuncu, M.R.: Learning conditional deformable templates with convolutional networks. arXiv:1908.02738 [cs, eess] (2019). arXiv: 1908.02738

  8. Gao, L., Pan, H., Liu, F., Xie, X., Zhang, Z., Han, J.: Brain disease diagnosis using deep learning features from longitudinal MR images. In: Cai, Y., Ishikawa, Y., Xu, J. (eds.) Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data. LNCS, vol. 10987, pp. 327–339. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96890-2_27

  9. Grathwohl, W., Wilson, A.: Disentangling space and time in video with hierarchical variational auto-encoders. arXiv preprint arXiv:1612.04440 (2016)

  10. Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework (2016)

    Google Scholar 

  11. Hsu, W.N., Zhang, Y., Glass, J.: Unsupervised learning of disentangled and interpretable representations from sequential data. Adv. Neural Inf. Process. Syst. 30, 1878–1889 (2017)

    Google Scholar 

  12. Kim, H., Mnih, A.: Disentangling by factorising. arXiv:1802.05983 [cs, stat] (2019). arXiv: 1802.05983

  13. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  14. Krebs, J., Delingette, H., Ayache, N., Mansi, T.: Learning a generative motion model from image sequences based on a latent motion matrix. arXiv:2011.01741 [cs] (2020). arXiv: 2011.01741

  15. Li, Y., Mandt, S.: Disentangled sequential autoencoder. arXiv preprint arXiv:1803.02991 (2018)

  16. Louis, M., Charlier, B., Durrleman, S.: Geodesic discriminant analysis for manifold-valued data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 332–340 (2018)

    Google Scholar 

  17. Louis, M., Couronné, R., Koval, I., Charlier, B., Durrleman, S.: Riemannian geometry learning for disease progression modelling. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds.) Information Processing in Medical Imaging. IPMI 2019. LNCS, vol. 11492, pp. 542–553. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_42

  18. Mathieu, E., Rainforth, T., Siddharth, N., Teh, Y.W.: Disentangling disentanglement in variational autoencoders. In: International Conference on Machine Learning, pp. 4402–4412. PMLR (2019)

    Google Scholar 

  19. Ravi, D., Alexander, D.C., Oxtoby, N.P.: Degenerative adversarial neuroimage nets: Generating images that mimic disease progression. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. LNCS, vol. 11766, pp. 164–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_19

  20. Routier, A., et al.: Clinica: an open source software platform for reproducible clinical neuroscience studies (2019). https://hal.inria.fr/hal-02308126

  21. Schiratti, J.B., Allassonniere, S., Colliot, O., Durrleman, S.: Learning spatiotemporal trajectories from manifold-valued longitudinal data. In: Advances in Neural Information Processing Systems, pp. 2404–2412 (2015)

    Google Scholar 

  22. Xia, T., Chartsias, A., Tsaftaris, S.A.: Consistent brain ageing synthesis. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. LNCS, vol. 11767, pp. 750–758. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_82

  23. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. In: Guyon, I. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 3391–3401. Curran Associates, Inc. (2017)

    Google Scholar 

  24. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4352–4360. IEEE, Honolulu, HI (2017). https://doi.org/10.1109/CVPR.2017.463

  25. Zhao, Q., Liu, Z., Adeli, E., Pohl, K.M.: LSSL: Longitudinal Self-Supervised Learning. arXiv:2006.06930 [cs, stat] (2020). http://arxiv.org/abs/2006.06930. arXiv: 2006.06930

Download references

Acknowledgements

This work has been partly funded by the European Research Council (ERC) under Grant Agreement No. 678304, European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 826421 (TVB-Cloud), and the program “Investissements d’avenir” ANR-10-IAIHU-06 (IHU-A-ICM) and ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 280 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Couronné, R., Vernhet, P., Durrleman, S. (2021). Longitudinal Self-supervision to Disentangle Inter-patient Variability from Disease Progression. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics