Skip to main content

Abstract

In the last few years an outbreak of Internet of Things (IoT) solutions have been placed in service around the globe giving rise to a multi-billion market size. IoT software platforms are evolving as the main pillar for the rapid development of scalable and efficient IoT applications. Such platforms are offering end-to-end services including connectivity between smart objects and cloud infrastructures, scalable storage as well as programming frameworks and data analytics to create valuable insights for new business use cases. This paper proposes a broad evaluation scheme for IoT software platforms based on an analysis of the characteristics found in contemporary platforms that are surveyed. The evaluation criteria are organized into four categories: core (Connectivity, Device Management, Integration APIs, Security, Endorsed Hardware, Hosting), data management and processing (Storage, Multi-Modal Support, Analytics, Visualization), application empowerment (Event-driven Actions, Push Notifications, Programming Frameworks, Third Party Integration), and accessibility (Pricing, Support). A comparative analysis of state of-the-art IoT software platforms is conducted based on the defined criteria followed by a critical presentation of fundamental features, commonalities and differences between them. Furthermore, challenges in this domain that are open to address in the future are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borgia, E.: The internet of things vision: Key features, applications and open issues. Comput. Commun. 54, 1–31 (2014)

    Article  Google Scholar 

  2. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  Google Scholar 

  3. Minerva, R., Biru, A., Rotondi, D.: Towards a definition of the internet of things (IoT). IEEE Internet Initiative 1(1), 1–86 (2015)

    Google Scholar 

  4. Mahdi, M.A., Hasson, S.T.: A contribution to the role of the wireless sensors in the IoT era. J. Telecommun. Electron. Comput. Eng. (JTEC) 9(2–11), 1–6 (2017)

    Google Scholar 

  5. Yanagida, R., Bhatti, S.N.: Seamless internet connectivity for ubiquitous communication. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 1022–1033 (2019)

    Google Scholar 

  6. Yang, C., Huang, Q., Li, Z., Liu, K., Hu, F.: Big Data and cloud computing: innovation opportunities and challenges. Int. J. Dig. Earth 10(1), 13–53 (2017)

    Article  Google Scholar 

  7. Babik, M., Prelz, F., Froy, T., Grigoras, C., Chudoba, J., Finnern, T., et al.: IOP: IPv6 Security. J. Phys.: Conf. Ser. 898, 102008 (2017)

    Google Scholar 

  8. Premsankar, G., Di Francesco, M., Taleb, T.: Edge computing for the internet of things: a case study. IEEE Internet Things J. 5(2), 1275–1284 (2018)

    Article  Google Scholar 

  9. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  10. Karagiorgou, S., Vafeiadis, G., Ntalaperas, D., Lykousas, N., Vergeti, D., Alexandrou, D.: Unveiling trends and predictions in digital factories. In: 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 326–332. IEEE (2019)

    Google Scholar 

  11. Elizalde, D.: Why There’s No Killer App for IoT (2017). Available online: https://medium.com/iotforall/why-theres-no-killer-app-for-iot-5646fda5a0fe

  12. Lamarre, E., May, B.: Ten Trends Shaping the Internet of Things Business Landscape. McKinsey Digital (2019). Available online: https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/ten-trends-shaping-the-internet-of-things-business-landscape

  13. Lueth, K.L.: The 25 Best IoT Platforms 2019—Based on Customer Reviews (2019). Available online: https://iot-analytics.com/the-25-best-iot-platforms-2019/

  14. Hejazi, H., Rajab, H., Cinkler, T., Lengyel, L.: Survey of platforms for massive IoT. In: 2018 IEEE International Conference on Future IoT Technologies (Future IoT), pp. 1–8. IEEE (2018)

    Google Scholar 

  15. Banks, A., Briggs, E., Borgendale, K., Gupta, R.: MQTT Version 5.0. OASIS Standard (2019). Available online: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

  16. Shelby, Z., Hartke, K., Bormann, C., Frank, B.: RFC 7252: Constrained Application Protocol (CoAP). Asma A. Elmangoush, pp. 156 (2014). Available online: https://coap.technology/

  17. Naik, N.: Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In: 2017 IEEE international systems engineering symposium (ISSE), pp. 1–7. IEEE (2017)

    Google Scholar 

  18. Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., Alonso-Zarate, J.: A survey on application layer protocols for the internet of things. Trans. IoT Cloud Comp. 3(1), 11–17 (2015)

    Google Scholar 

  19. Meddeb, M., Alaya, M.B., Monteil, T., Dhraief, A., Drira, K.: M2M platform with autonomic device management service. Procedia Comput. Sci. 32, 1063–1070 (2014)

    Article  Google Scholar 

  20. Microsoft Azure IoT Hub: Overview of Device Management with Azure IoT Hub (2017). Available online: https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-management-overview

  21. Zdravković, M., Trajanović, M., Sarraipa, J., Jardim-Gonçalves, R., Lezoche, M., Aubry, A., Panetto, H.: Survey of internet-of-things platforms. In: 6th International Conference on Information Society and Techology, ICIST 2016, vol. 1, pp. 216–220 (2017)

    Google Scholar 

  22. Solapure, S.S., Kenchannavar, H.: Internet of things: a survey related to various recent architectures and platforms available. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 2296–2301. IEEE (2016)

    Google Scholar 

  23. Singh, K.J., Kapoor, D.S.: Create your own internet of things: a survey of IoT platforms. IEEE Consumer Electron. Mag. 6(2), 57–68 (2017)

    Article  Google Scholar 

  24. Khan, M.A., Salah, K.: IoT security: review, blockchain solutions, and open challenges. Futur. Gener. Comput. Syst. 82, 395–411 (2018)

    Article  Google Scholar 

  25. Díaz, M., Martín, C., Rubio, B.: State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing. J. Netw. Comput. Appl. 67, 99–117 (2016)

    Article  Google Scholar 

  26. Truong, H.L., Dustdar, S.: Principles for engineering IoT cloud systems. IEEE Cloud Comput. 2(2), 68–76 (2015)

    Article  Google Scholar 

  27. NoSQL vs Relational Databases: Available online: https://www.mongodb.com/scale/nosql-vs-relational-databases

  28. Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun. Surv. Tutor. 20(4), 2923–2960 (2018)

    Article  Google Scholar 

  29. Ammar, M., Russello, G., Crispo, B.: Internet of things: a survey on the security of IoT frameworks. J. Inf. Secur. Appl. 38, 8–27 (2018)

    Google Scholar 

  30. Introduction to IoT Platform: Alibaba Cloud Document Center. Available online: https://www.alibabacloud.com/help/product/30520.htm

  31. AWS IoT: Overview. IOT. Available online: https://aws.amazon.com/iot/

  32. Altair SmartWorksâ„¢: Carriots. Available online: https://www.carriots.com/what-is-carriots

  33. Cisco IoT Solutions: Cisco Kinetic IoT Platform. Available online: https://www.cisco.com/c/en/us/solutions/internet-of-things/iot-kinetic.html

  34. Google Cloud Platform: Google Cloud IoT Core. Available online: https://cloud.google.com/iot-core

  35. Watson IoT Platform—Overview. Available online: https://www.ibm.com/cloud/watson-iot-platform

  36. IBM, Securely connect, manage and analyze IoT data with Watson IoT Platform. Available online: https://www.ibm.com/business-operations/iot-platform

  37. Microsoft Azure: Internet of Things Platform. Available online: https://azure.microsoft.com/en-us/overview/iot/

  38. Oracle: IoT Intelligent Applications. Available online: https://www.oracle.com/internet-of-things/

  39. Industrial Internet of Things (IIoT): ThingWorx IoT Platform. Available online: https://www.ptc.com/en/products/iiot/thingworx-platform

  40. SiteWhere. Available online: https://www.sitewhere.com/

  41. Luis Bustamante, A., Patricio, M.A., Molina, J.M.: Thinger. io: An open source platform for deploying data fusion applications in IoT environments. Sensors 19(5), 1044 (2019)

    Google Scholar 

  42. Thingsboard. Open-source IoT Platform. Available online: https://thingsboard.io/

  43. ThingSpeak for IoT Projects. Available online: https://thingspeak.com/

  44. Ubidots. Ubidots. Available online: https://ubidots.com/

  45. WSO2 IoT Server—Flexible Open Source IoT Platform. Available online: https://wso2.com/iot/

  46. Flespi MQTT API: (n.d.) Available online: https://flespi.com/mqtt-api

  47. MathWorks. Choose Between REST API and MQTT API.: (n.d.). Available online: https://www.mathworks.com/help/thingspeak/choose-between-rest-and-mqtt.html

  48. Ismail, A.A., Hamza, H.S., Kotb, A.M.: Performance evaluation of open source iot platforms. In: 2018 IEEE Global Conference on Internet of Things (GCIoT), pp. 1–5. IEEE (2018)

    Google Scholar 

  49. IoT Analytics (2020) List of 620 IoT Platform Companies. Available online: https://iot-analytics.com/product/list-of-620-iot-platform-companies/

  50. Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., Mankodiya, K.: Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Futur. Gener. Comput. Syst. 78, 659–676 (2018)

    Article  Google Scholar 

  51. Chen, S., Xu, H., Liu, D., Hu, B., Wang, H.: A vision of IoT: applications, challenges, and opportunities with china perspective. IEEE Internet Things J. 1(4), 349–359 (2014)

    Article  Google Scholar 

  52. Palattella, M.R., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L.A., Boggia, G., Dohler, M.: Standardized protocol stack for the internet of (important) things. IEEE Commun. Surv. Tutor. 15(3), 1389–1406 (2012)

    Article  Google Scholar 

  53. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  54. Meneghello, F., Calore, M., Zucchetto, D., Polese, M., Zanella, A.: IoT: internet of threats? A survey of practical security vulnerabilities in real IoT devices. IEEE Internet Things J. 6(5), 8182–8201 (2019)

    Article  Google Scholar 

  55. Pereira, C., Aguiar, A.: Towards efficient mobile M2M communications: survey and open challenges. Sensors 14(10), 19582–19608 (2014)

    Article  Google Scholar 

  56. Čolaković, A., Hadžialić, M.: Internet of Things (IoT): a review of enabling technologies, challenges, and open research issues. Comput. Netw. (2018)

    Google Scholar 

  57. Lee, I., Lee, K.: The internet of things (IoT): applications, investments, and challenges for enterprises. Bus. Horiz. 58(4), 431–440 (2015)

    Article  Google Scholar 

  58. L’heureux, A., Grolinger, K., Elyamany, H.F., Capretz, M.A.: Machine learning with big data: challenges and approaches. IEEE Access 5, 7776–7797 (2017)

    Google Scholar 

  59. Gou, Z., Yamaguchi, S., Gupta, B.B.: Analysis of various security issues and challenges in cloud computing environment: a survey. In: Identity Theft: Breakthroughs in Research and Practice, pp. 221–247. IGI Global (2017)

    Google Scholar 

  60. Choi, S.I., Koh, S.J.: Use of proxy mobile IPv6 for mobility management in CoAP-based internet-of-things networks. IEEE Commun. Lett. 20(11), 2284–2287 (2016)

    Article  Google Scholar 

  61. Wu, Q., Ding, G., Du, Z., Sun, Y., Jo, M., Vasilakos, A.V.: A cloud-based architecture for the Internet of spectrum devices over future wireless networks. IEEE access 4, 2854–2862 (2016)

    Article  Google Scholar 

  62. Samie, F., Tsoutsouras, V., Xydis, S., Bauer, L., Soudris, D., Henkel, J.: Distributed QoS management for internet of things under resource constraints. In: Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, pp. 1–10 (2017)

    Google Scholar 

  63. Pliatsios, A., Goumopoulos, C., Kotis, K.: A Review on IoT frameworks supporting multi-level interoperability—the semantic social network of things framework. Int. J. Adv. Internet Technol. 13(1), 46–64 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Goumopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Astropekakis, K., Drakakis, E., Grammatikakis, K., Goumopoulos, C. (2022). A Survey of IoT Software Platforms. In: Nicopolitidis, P., Misra, S., Yang, L.T., Zeigler, B., Ning, Z. (eds) Advances in Computing, Informatics, Networking and Cybersecurity. Lecture Notes in Networks and Systems, vol 289. Springer, Cham. https://doi.org/10.1007/978-3-030-87049-2_10

Download citation

Publish with us

Policies and ethics