Skip to main content

Machine Learning Applied for Spectra Classification

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Spectroscopy experiment techniques are widely used and produce a huge amount of data especially in facilities with very high repetition rates. In High Energy Density (HED) experiments with high-density materials, changes in pressure will cause changes in the spectral peak. Immediate feedback on the actual status (e.g. time-resolved status of the sample) would be essential to quickly judge how to proceed with the experiment. The two major spectral changes we aim to capture are either the change of intensity distribution (e.g., drop or appearance) of peaks at certain locations, or the shift of those on the spectrum.

In this work, we apply recent popular machine learning/deep learning models to HED experimental spectra data classification. The models we presented range from supervised deep neural networks (state-of-the-art LSTM-based model and Transformer-based model) to unsupervised spectral clustering algorithm. These are the common architectures for time series processing. The PCA method is used as data preprocessing for dimensionality reduction. Three different ML algorithms are evaluated and compared for the classification task. The results show that all three methods can achieve 100% classification confidence. Among them, the spectra clustering method consumes the least calculation time (0.069 s), and the transformer-based method uses the most training time (0.204 s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakatsutsumi, M., et al.: Scientific Instrument High Energy Density Physics (HED) (2014)

    Google Scholar 

  2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  3. Edelen, A., et al.: Opportunities in machine learning for particle accelerators. arXiv:1811.03172 (2018)

  4. Wu, N., Green, B., Ben, X., O'Banion, S.: Deep transformer models for time series forecasting: The influenza prevalence case. arXiv:2001.08317 (2020)

  5. Lai, G., Chang, W.C., Yang, Y., Liu, H.: Modeling long-and short-term temporal patterns with deep neural networks. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 95–104 (2018)

    Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recurrent models for human activity recognition using wearables. arXiv:1604.08880 (2016)

  8. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.: Learning to diagnose with LSTM recurrent neural networks. arXiv:1511.03677 (2015)

  9. Wu, H., Prasad, S.: Convolutional recurrent neural networks forhyperspectral data classification. Remote Sens. 9(3), 298 (2017)

    Article  Google Scholar 

  10. Vaswani, A., et al: Attention is all you need. arXiv:1706.03762 (2017)

  11. Bertasius, G., Wang, H., Torresani, L.: Is Space-Time Attention All You Need for Video Understanding?. arXiv:2102.05095 (2021)

  12. Garnot, V.S.F., Landrieu, L., Giordano, S., Chehata, N.: Satellite image time series classification with pixel-set encoders and temporal self-attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12325–12334 (2020)

    Google Scholar 

  13. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In:2017 International joint conference on neural networks (IJCNN), pp. 1578–1585. IEEE (2017)

    Google Scholar 

  14. Shih, S.-Y., Sun, F.-K., Lee, H.: Temporal pattern attention for multivariate time series forecasting. Mach. Learn. 108(8–9), 1421–1441 (2019). https://doi.org/10.1007/s10994-019-05815-0

    Article  MathSciNet  MATH  Google Scholar 

  15. Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., Eickhoff, C.: A Transformer-based Framework for Multivariate Time Series Representation Learning. arXiv:2010.02803 (2020)

  16. He, X., Chen, Y., Lin, Z.: Spatial-spectral transformer for hyperspectral image classification. Remote Sens. 13(3), 498 (2021)

    Article  Google Scholar 

  17. Zhang, S., Li, X., Zong, M., Zhu, X., Cheng, D.: Learning k for knn classification. ACM Trans. Intell. Syst. Technol. 8(3), 1–19 (2017)

    Google Scholar 

  18. Vitale, R., Bevilacqua, M., Bucci, R., Magri, A.D., Magri, A.L., Marini, F.: A rapid and non-invasive method for authenticating the by NIR spectroscopy and chemometrics. Chemometr. Intell. Lab. Syst. 121, 90–99 (2013)

    Article  Google Scholar 

  19. Chen, H., Lin, Z., Tan, C.: Nondestructive discrimination of pharmaceutical preparations using near-infrared spectroscopy and partial least-squares discriminant analysis. Anal. Lett. 51, 564–574 (2018)

    Article  Google Scholar 

  20. Zou, A.M., Shi, J., Ding, J., Wu, F.X.: Charge state determination of peptide tandem mass spectra using support vector machine (SVM). IEEE Trans. Inf Technol. Biomed. 14(3), 552–558 (2010)

    Article  Google Scholar 

  21. da Costa, N.L., Llobodanin, L.A.G., de Lima, M.D., Castro, I.A., Barbosa, R.: Geographical recognition of Syrah wines by combining feature selection with Extreme Learning Machine. Measurement 120, 92–99 (2018)

    Article  Google Scholar 

  22. Zheng, W., Shu, H., Tang, H., Zhang, H.: Spectra data classification with kernel extreme learning machine. Chemomet. Intell. Laboratory Syst. 192, 103815 (2019)

    Google Scholar 

  23. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  24. Jia, H., Ding, S., Xu, X., Nie, R.: The latest research progress on spectral clustering. Neural Comput. Appl. 24(7–8), 1477–1486 (2013). https://doi.org/10.1007/s00521-013-1439-2

    Article  Google Scholar 

  25. Tan, N., Sun, Y.D., Wang, X.S., Huang, A.M., Xie, B.F.: Research on near infrared spectrum with principal component analysis and support vector machine for timber identification. Spectrosc. Spectr. Anal. 37, 3370–3374 (2017)

    Google Scholar 

  26. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)

    Article  MathSciNet  Google Scholar 

  27. Van Houdt, G., Mosquera, C., Nápoles, G.: A review on the long short-term memory model. Artif. Intell. Rev. 53(8), 5929–5955 (2020). https://doi.org/10.1007/s10462-020-09838-1

    Article  Google Scholar 

  28. Mall, R., Langone, R., Suykens, J.A.: Kernel spectral clustering for big data networks. Entropy 15(5), 1567–1586 (2013)

    Article  MathSciNet  Google Scholar 

  29. White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proceedings of the 2005 SIAM International Conference on Data Mining, Newport Beach, CA, USA, 21–23 April 2005; pp. 274–285 (2005)

    Google Scholar 

  30. Catak, F.O., Aydin, I., Elezaj, O., Yildirim-Yayilgan, S.: Practical implementation of privacy preserving clustering methods using a partially homomorphic encryption algorithm. Electronics 9(2), 229 (2020)

    Article  Google Scholar 

  31. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  Google Scholar 

  32. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980.(2014)

  33. Karim, F., Majumdar, S., Darabi, H., Chen, S.: LSTM fully convolutional networks for time series classification. IEEE Access 6, 1662–1669 (2017)

    Article  Google Scholar 

  34. Rußwurm, M., Körner, M.: Self-attention for raw optical satellite time series classification. ISPRS J. Photogramm. Remote. Sens. 169, 421–435 (2020)

    Article  Google Scholar 

  35. Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate LSTM-FCNs for time series classification. Neural Netw. 116, 237–245 (2019)

    Article  Google Scholar 

  36. Belagoune, S., Bali, N., Bakdi, A., Baadji, B., Atif, K.: Deep learning through LSTM classification and regression for transmission line fault detection, diagnosis and location in large-scale multi-machine power systems. Measurement 177, 109330 (2021)

    Google Scholar 

  37. Interdonato, R., Ienco, D., Gaetano, R., Ose, K.: DuPLO: A DUal view point deep learning architecture for time series classification. ISPRS J. Photogramm. Remote. Sens. 149, 91–104 (2019)

    Article  Google Scholar 

  38. Behera, R.K., Jena, M., Rath, S.K., Misra, S.: Co-LSTM: Convolutional LSTM model for sentiment analysis in social big data. Inf. Process. Manage. 58(1), 102435 (2021)

    Google Scholar 

  39. Ma, J., Shou, Z., Zareian, A., Mansour, H., Vetro, A., Chang, S.F.: CDSA: cross-dimensional self-attention for multivariate, geo-tagged time series imputation. arXiv:1905.09904 (2019)

  40. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078 (2014)

  41. Jebara, T., Song, Y., Thadani, K.: Spectral clustering and embedding with hidden markov models. In: Kok, J.N., Koronacki, J., Lopez, R., de Mantaras, S., Matwin, D.M., Skowron, A. (eds.) Machine Learning: ECML 2007, pp. 164–175. Springer Berlin Heidelberg, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_18

    Chapter  Google Scholar 

  42. Abayomi-Alli, A., Abayomi-Alli, O., Vipperman, J., Odusami, M., Misra, S.: Multi-class classification of impulse and non-impulse sounds using deep convolutional neural network (DCNN). In: Misra, S., (eds.) ICCSA 2019. LNCS, vol. 11623, pp. 359–371. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24308-1_30

  43. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

    Article  MathSciNet  MATH  Google Scholar 

  44. Lazzeri, F.: Machine Learning for Time Series Forecasting with Python®. Wiley (2020). https://doi.org/10.1002/9781119682394

    Book  Google Scholar 

  45. VanderPlas, J.: Python data science handbook: Essential tools for working with data. “O'Reilly Media, Inc.“ (2016)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Christian Plueckthun and Zuzana Konopkova at European XFEL for providing the HED experimental spectral data.

This work was supported by China Scholarship Council (CSC). Furthermore, Péter Hegedűs was supported by the Bolyai János Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Y., Brockhauser, S., Hegedűs, P. (2021). Machine Learning Applied for Spectra Classification. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12957. Springer, Cham. https://doi.org/10.1007/978-3-030-87013-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87013-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87012-6

  • Online ISBN: 978-3-030-87013-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics