Skip to main content

Evolution of Automated Deduction and Dynamic Constructions in Geometry

  • Chapter
  • First Online:
Mathematics Education in the Age of Artificial Intelligence

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 17))

  • 1144 Accesses

Abstract

Given its formal, logical and spatial properties, geometry allows an integrated framework where model theory and proof theory approaches can be explored. The development of geometry automatic theorem proving systems and dynamic geometry systems began as separated enterprises but its merging in integrated systems is currently doing its way. In this text, the history of automated deduction in geometry is traced, from the early development of automated theorem provers for geometry and from the emergence of the dynamic geometry systems, to the current status where different application systems combine dynamic geometry and automated deduction. These tools enable their users to explore existing geometry knowledge in addition to creating new constructions and testing new conjectures.

This work is funded by national funds through the FCT—Foundation for Science and Technology, I.P., within the scope of the project CISUC—UID/CEC/00326/2020 and by European Social Fund, through the Regional Operational Program Centro 2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unfortunately most of the tiles were lost after the expelling of the Jesuits from Portugal by the Marquis of Pombal in 1759, the subsequent reform of the University of Coimbra and the construction of new buildings on the expense of the old ones.

  2. 2.

    Coherent logic is a fragment of (finitary) first-order logic which allows only the connectives and quantifiers \(\wedge \) (and), \(\vee \) (or), \(\top \) (true), \(\bot \) (false), \(\exists \) (existential quantifier).

  3. 3.

    Negative and positive orientation are only a syntactic convention to disambiguate between “different” geometric constructions built from the same set of points.

  4. 4.

    The Pythagoras difference is a generalization of the Pythagoras equality regarding the three sides of a right triangle, to an expression applicable to any triangle. For a triangle ABC with the right angle at B, it holds that \(\mathcal {P}_{ABC}=0\).

  5. 5.

    https://en.wikipedia.org/wiki/Automated_theorem_proving.

  6. 6.

    http://www.tptp.org/CASC/.

  7. 7.

    This is a recent contribution, by the author, to TPTP.

  8. 8.

    For the Euler line theorem, GCLC’s Wu Method took 0.012 s, Vampire took 0.062s.

  9. 9.

    https://en.wikipedia.org/wiki/Prolog.

  10. 10.

    http://maude.cs.illinois.edu/w/index.php/The_Maude_System.

  11. 11.

    The OpenGeometryProver github project: https://github.com/opengeometryprover/.

  12. 12.

    JGEX is currently not being supported/developed.

  13. 13.

    Portfolio problem solving is an approach in which for an individual instance of a specific problem, one particular, hopefully most appropriate, solving technique is automatically selected among several available ones and used. The selection usually employs machine learning methods.

  14. 14.

    http://polarprof-001-site1.htempurl.com/geometriagon/.

  15. 15.

    http://car.rene-grothmann.de/doc_en/index.html.

  16. 16.

    https://www.edukera.com/.

  17. 17.

    http://hilbert.mat.uc.pt/TGTP/index.php.

  18. 18.

    http://www.tptp.org/.

  19. 19.

    Pedro Quaresma and Pierluigi Graziani, Measuring the Readability of a Proof, submitted to publication.

References

  • Baeta, N., & Quaresma, P. (2013). The full angle method on the OpenGeoProver. In C. Lange, D. Aspinall, J. Carette, J. Davenport, A. Kohlhase, M. Kohlhase, P. Libbrecht, P. Quaresma, F. Rabe, P. Sojka, I. Whiteside, & W. Windsteiger (Eds.), MathUI, OpenMath, PLMMS and ThEdu Workshops and Work in Progress at the Conference on Intelligent Computer Mathematics, no. 1010 in CEUR Workshop Proceedings. Aachen. http://ceur-ws.org/Vol-1010/paper-08.pdf.

  • Baeta, N., Quaresma, P., & Kovács, Z. (2020). Towards a geometry automated provers competition. In Proceedings 8th International Workshop on Theorem Proving Components for Educational Software, (ThEdu’19). Electronic Proceedings in Theoretical Computer Science (Vol. 313, pp. 93–100). Natal, Brazil, 25th August 2019. https://doi.org/10.4204/EPTCS.313.6

  • Beeson, M. (2015). A constructive version of Tarski’s geometry. Annals of Pure and Applied Logic, 166(11), 1199–1273. https://doi.org/10.1016/j.apal.2015.07.006.

    Article  Google Scholar 

  • Bertot, Y., & Castéran, P. (2004). Interactive theorem proving and program development: Coq’Art: The calculus of inductive constructions. EATCS: Springer. https://doi.org/10.1007/978-3-662-07964-5.

  • Botana, F., Hohenwarter, M., Janičić, P., Kovács, Z., Petrović, I., Recio, T., & Weitzhofer, S. (2015). Automated theorem proving in GeoGebra: Current achievements. Journal of Automated Reasoning, 55(1), 39–59. https://doi.org/10.1007/s10817-015-9326-4.

    Article  Google Scholar 

  • Chou, S. (1985). Proving and discovering geometry theorems using Wu’s method. Ph.D. thesis, The University of Texas, Austin.

    Google Scholar 

  • Chou, S. C. (1987). Mechanical geometry theorem proving. Dordrecht: D. Reidel Publishing Company.

    Book  Google Scholar 

  • Chou, S. C., & Gao, X. S. (2001). Automated reasoning in geometry. In J. A. Robinson & A. Voronkov (Eds.), Handbook of automated reasoning (pp. 707–749). Elsevier Science Publishers B.V. https://doi.org/10.1016/B978-044450813-3/50013-8.

  • Chou, S. C., Gao, X. S., & Zhang, J. Z. (1993). Automated production of traditional proofs for constructive geometry theorems. In M. Vardi (Ed.), Proceedings of the Eighth Annual IEEE Symposium on Logic in Computer Science LICS (pp. 48–56). IEEE Computer Society Press.

    Google Scholar 

  • Chou, S. C., Gao, X. S., & Zhang, J. Z. (1994). Machine proofs in geometry. World Scientific. https://doi.org/10.1142/2196.

  • Chou, S. C., Gao, X. S., & Zhang, J. Z. (1995). Automated production of traditional proofs in solid geometry. Journal of Automated Reasoning, 14, 257–291. https://doi.org/10.1007/bf00881858.

    Article  Google Scholar 

  • Chou, S. C., Gao, X. S., & Zhang, J. Z. (1996a). Automated generation of readable proofs with geometric invariants, I. Multiple and shortest proof generation. Journal of Automated Reasoning, 17(13), 325–347. https://doi.org/10.1007/BF00283133.

  • Chou, S. C., Gao, X. S., & Zhang, J. Z. (1996b). Automated generation of readable proofs with geometric invariants, II. Theorem proving with full-angles. Journal of Automated Reasoning, 17(13), 349–370. https://doi.org/10.1007/BF00283134.

  • Chou, S. C., Gao, X. S., & Zhang, J. Z. (2000). A deductive database approach to automated geometry theorem proving and discovering. Journal of Automated Reasoning, 25, 219–246.

    Article  Google Scholar 

  • Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., & Talcott, C. (2007). All about Maude: A high-performance logical framework. Lecture Notes in Computer Science (Vol. 4350). Springer. https://doi.org/10.1007/978-3-540-71999-1.

  • Clocksin, W. F., & Mellish, C. S. (2003). Programming in Prolog. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55481-0.

  • Coelho, H., & Pereira, L. M. (1979). Geom: A Prolog geometry theorem prover. Memórias 525, Laboratório Nacional de Engenharia Civil, Ministério de Habitação e Obras Públicas, Portugal.

    Google Scholar 

  • Coelho, H., & Pereira, L. M. (1986). Automated reasoning in geometry theorem proving with Prolog. Journal of Automated Reasoning, 2(4), 329–390. https://doi.org/10.1007/BF00248249.

  • Collins, G. (1975). Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In H. Brakhage (Ed.), Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern. Lecture Notes in Computer Science (Vol. 33), 20–23 May 1975. Springer, Berlin, Heidelberg.https://doi.org/10.1007/3-540-07407-4_17.

  • van Dalen, D. (1980). Logic and structure. Universitext. Springer-Verlag

    Google Scholar 

  • Elcock, E. W. (1977). Representation of knowledge in geometry machine. Machine Intelligence, 8, 11–29.

    Google Scholar 

  • Font, L., Richard, P. R., & Gagnon, M. (2018). Improving QED-Tutrix by automating the generation of proofs. In P. Quaresma, & W. Neuper (Eds.), Proceedings 6th International Workshop on Theorem Proving Components for Educational Software, Gothenburg, Sweden, 6 Aug 2017, Electronic Proceedings in Theoretical Computer Science (Vol. 267, pp. 38–58). Open Publishing Association (2018). https://doi.org/10.4204/EPTCS.267.3.

  • Gabriel Silva, J. (2017). Coimbra: uma universidade global, desde o século xvi. Rua Larga, 50. Imprensa da Universidade de Coimbra

    Google Scholar 

  • Gagnon, M., Leduc, N., Richard, P., & Tessier-Baillargeon, M. (2017). Qed-tutrix: Creating and expanding a problem database towards personalized problem itineraries for proof learning in geometry. In Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (CERME10).

    Google Scholar 

  • Gao, H., Li, J., & Cheng, J. (2019). Measuring interestingness of theorems in automated theorem finding by forward reasoning based on strong relevant logic. In 2019 IEEE International Conference on Energy Internet (ICEI) (pp. 356–361). IEEE. https://doi.org/10.1109/ICEI.2019.00069.

  • Gelernter, H. (1995). Realization of a geometry-theorem proving machine. In Computers & thought, 2nd edn. (pp. 134–152). MIT Press, Cambridge, MA, USA.

    Google Scholar 

  • Gelernter, H., Hansen, J. R., & Loveland, D. W. (1960). Empirical explorations of the geometry theorem machine. In Papers presented at the 3–5 May 1960, western joint IRE-AIEE-ACM computer conference, IRE-AIEE-ACM’60 (Western) (pp. 143–149). ACM, New York, NY, USA. https://doi.org/10.1145/1460361.1460381.

  • Greeno, J., Magone, M. E., & Chaiklin, S. (1979). Theory of constructions and set in problem solving. Memory and Cognition, 7(6), 445–461. https://doi.org/10.3758/BF03198261.

  • Haralambous, Y., & Quaresma, P. (2014). Querying geometric figures using a controlled language, ontological graphs and dependency lattices. In S. W. et al. (Eds.), CICM 2014. LNAI (Vol. 8543, pp. 298–311). Springer.

    Google Scholar 

  • Haralambous, Y., & Quaresma, P. (2018). Geometric search in TGTP. In H. Li (Ed.), Proceedings of the 12th International Conference on Automated Deduction in Geometry. SMS International. http://adg2018.cc4cm.org/ADG2018Proceedings.

  • Hilbert, D. (1977). Foundations of geometry, 10th Revised edition. Paul Barnays: Open Court Publishing.

    Google Scholar 

  • Jackiw, N. (2001). The Geometer’s Sketchpad v4.0. Key Curriculum Press.

    Google Scholar 

  • Janičić, P. (2006). GCLC—A tool for constructive Euclidean geometry and more than that. In A. Iglesias & N. Takayama (Eds.), Mathematical Software, ICMS 2006. Lecture Notes in Computer Science (Vol. 4151, pp. 58–73). Springer. https://doi.org/10.1007/11832225_6.

  • Janičić, P., Narboux, J., & Quaresma, P. (2012). The area method: A recapitulation. Journal of Automated Reasoning, 48(4), 489–532. https://doi.org/10.1007/s10817-010-9209-7.

    Article  Google Scholar 

  • Kapur, D. (1986a). Geometry theorem proving using Hilbert’s Nullstellensatz. In SYMSAC’86: Proceedings of the Fifth ACM Symposium on Symbolic and Algebraic Computation (pp. 202–208). New York, NY, USA: ACM Press. https://doi.org/10.1145/32439.32479.

  • Kapur, D. (1986b). Using Gröbner bases to reason about geometry problems. Journal of Symbolic Computation, 2(4), 399–408. https://doi.org/10.1016/S0747-7171(86)80007-4.

  • Kortenkamp, U., & Richter-Gebert, J. (2004). Using automatic theorem proving to improve the usability of geometry software. In P. Libbrecht (Ed.), Proceedings of MathUI 2004. http://kortenkamps.net/papers/2004/ATP-UI-article.pdf.

  • Kovács, Z. (2015). The relation tool in GeoGebra 5. In F. Botana & P. Quaresma (Eds.), Automated deduction in geometry (pp. 53–71). Springer International Publishing. https://doi.org/10.1007/978-3-319-21362-0_4.

  • Kovács, Z., & Recio, T. (2020). Geogebra reasoning tools for humans and for automatons. In Proceedings of the 25th Asian Technology Conference in Mathematics (pp. 16–30). Mathematics and Technology, LLC. https://doi.org/10.13140/RG.2.2.26851.58407.

  • Laborde, J. M., & Strässer, R. (1990). Cabri-géomètre: A microworld of geometry guided discovery learning. International Reviews on Mathematical Education- Zentralblatt fuer Didaktik der Mathematik, 90(5), 171–177.

    Google Scholar 

  • Li, H. (2000). Clifford algebra approaches to mechanical geometry theorem proving. In X. S. Gao & D. Wang (Eds.), Mathematics mechanization and applications (pp. 205–299). San Diego, CA: Academic Press. https://doi.org/10.1016/B978-012734760-8/50009-0.

  • Nikolić, M., Marinković, V., Kovács, Z., & Janičić, P. (2019). Portfolio theorem proving and prover runtime prediction for geometry. Annals of Mathematics and Artificial Intelligence, 85, 119–146. https://doi.org/10.1007/s10472-018-9598-6.

  • Narboux, J. (2007). A graphical user interface for formal proofs in geometry. Journal of Automated Reasoning, 39, 161–180. https://doi.org/10.1007/s10817-007-9071-4.

    Article  Google Scholar 

  • Nevis, A. (1975). Plane geometry theorem proving using forward chaining. Artificial Intelligence, 6(1), 1–23. http://hdl.handle.net/1721.1/6218.

  • Pambuccian, V. (2004). The simplest axiom system for plane hyperbolic geometry. Studia Logica, 77(3), 385–411. https://doi.org/10.1023/B:STUD.0000039031.11852.66.

    Article  Google Scholar 

  • Petrović, I., Kovács, Z., Weitzhofer, S., Hohenwarter, M., & Janičić, P. (2012). Extending GeoGebra with automated theorem proving by using OpenGeoProver. In Proceedings CADGME 2012, Novi Sad, Serbia.

    Google Scholar 

  • von Plato, J. (1995). The axioms of constructive geometry. In Annals of pure and applied logic (Vol. 76, pp. 169–200). https://doi.org/10.1016/0168-0072(95)00005-2.

  • Quaife, A. (1989). Automated development of Tarski’s geometry. Journal of Automated Reasoning, 5, 97–118. https://doi.org/10.1007/BF00245024.

  • Quaresma, P. (2011). Thousands of geometric problems for geometric theorem provers (TGTP). In P. Schreck, J. Narboux & J. Richter-Gebert (Eds.), Automated deduction in geometry. Lecture Notes in Computer Science (Vol. 6877, pp. 169–181). Springer. https://doi.org/10.1007/978-3-642-25070-5_10.

  • Quaresma, P., Santos, V., Graziani, P., & Baeta, N. (2020). Taxonomy of geometric problems. Journal of Symbolic Computation, 97, 31–55. https://doi.org/10.1016/j.jsc.2018.12.004.

    Article  Google Scholar 

  • Recio, T., & Vélez, M. P. (1999). Automatic discovery of theorems in elementary geometry. Journal of Automated Reasoning, 23, 63–82. https://doi.org/10.1023/A:1006135322108.

    Article  Google Scholar 

  • Richter-Gebert, J., & Kortenkamp, U. (1999). The interactive geometry software Cinderella. Springer.

    Google Scholar 

  • Simões, C. (2007). Azulejos que ensinam: Entrevista a António Leal Duarte. Gazeta de Matemática, 153, 4.

    Google Scholar 

  • Stojanović, S., Pavlović, V., & Janičić, P. (2011). A coherent logic based geometry theorem prover capable of producing formal and readable proofs. In P. Schreck, J. Narboux & J. Richter-Gebert (Eds.), Automated deduction in geometry. Lecture Notes in Computer Science (Vol. 6877, pp. 201–220). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-25070-5_12.

  • Sutcliffe, G. (2017). The TPTP problem library and associated infrastructure. From CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning, 59(4), 483–502. https://doi.org/10.1007/s10817-017-9407-7.

  • Sutherland, I. E. (1963). Sketchpad, a man-machine graphical communication system. Ph.D. thesis, Massachusetts Institute of Technology, Lincoln Laboratory.

    Google Scholar 

  • Sutherland, I. E. (2003). Sketchpad: A man-machine graphical communication system. Technical Report. UCAM-CL-TR-574, University of Cambridge, Computer Laboratory. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf.

  • Tarski, A. (1951). A decision method for elementary algebra and geometry. Technical Report. RAND Corporation.

    Google Scholar 

  • Tessier-Baillargeon, M., Leduc, N., Richard, P., & Gagnon, M. (2017). Étude comparative de systèmes tutoriels pour l’exercice de la démonstration en géométrie. Annales de Didactique et de Sciences Cognitives, 22, 91–117.

    Google Scholar 

  • Wang, D. (1995). Reasoning about geometric problems using an elimination method. In J. Pfalzgraf & D. Wang (Eds.), Automated pratical reasoning (pp. 147–185). New York: Springer.https://doi.org/10.1007/978-3-7091-6604-8_8.

  • Wu, W. T. (1984). On the decision problem and the mechanization of theorem proving in elementary geometry. In Automated theorem proving: After 25 years. Contemporary Mathematics (Vol. 29, pp. 213–234). American Mathematical Society.

    Google Scholar 

  • Ye, Z., Chou, S. C., & Gao, X. S. (2011). An introduction to java geometry expert. In T. Sturm & C. Zengler (Eds.), Automated deduction in geometry. Lecture Notes in Computer Science (Vol. 6301, pp. 189–195). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-21046-4_10.

  • Zhang, J. Z., Chou, S. C., & Gao, X. S. (1995). Automated production of traditional proofs for theorems in Euclidean geometry I. The Hilbert intersection point theorems. Annals of Mathematics and Artificial Intelligence, 13, 109–137.https://doi.org/10.1007/BF01531326.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Quaresma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quaresma, P. (2022). Evolution of Automated Deduction and Dynamic Constructions in Geometry. In: Richard, P.R., Vélez, M.P., Van Vaerenbergh, S. (eds) Mathematics Education in the Age of Artificial Intelligence. Mathematics Education in the Digital Era, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-86909-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86909-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86908-3

  • Online ISBN: 978-3-030-86909-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics