Skip to main content

Graphene Application

  • Chapter
  • First Online:
Technological Applications of Nanomaterials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Graphene is an allotropic form of carbon with hexagonal structures with highly sought-after chemical and physical properties. This chapter initially presents a review of methods to obtain and characterizing graphene and a literature summary of applications of this material. In the end, expectations for future work are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

XRD:

X-ray diffraction

rGO:

Reduce graphene oxide

LIBs:

Lithium-ion batteries

GNR:

Graphene nano-ribbon

GO:

Graphene oxide

QD:

Graphene quantum

CQDs:

Carbon quantum dot

GQDs:

Graphene quantum dot

HRTEM:

High resolution transmition electron microscopy

SEM:

Scanning electron microscopy

TEM:

Transmition electron microscopy

EELS:

Electron energy loss spectroscopy

EDX:

Energy dispersive x-ray

LED:

Light emitting diode

WLED:

White light emitting diode

PEC:

Hidrogenio fotoeletronico

UHV:

Ultrahigh vacuum

References

  1. Mendonça, L. H. P.: Grafeno e a sua produção a partir da grafita natural, 2018. 47f. Course conclusion work (Undergraduate degree in Mining Engineering) - Engineering School of the Federal University of Minas Gerais, Minas Gerais (2018)

    Google Scholar 

  2. Kar, S., Talapatra, S.: Synthesis of Graphene. Encyclopedia of Nanotechnology. Springer, Dordrecht (2016). https://doi.org/10.1007/978-94-017-9780-1_53

  3. The University of Manchester, Discovery of Graphene, gra-phene.manchester.ac.uk (2014). Available in: https://www.graphene.manchester.ac.uk/learn/discovery-of-graphene/, Accessed 21 July 2021

  4. Rosa, H.G.: Estudo das propriedades ópticas do grafeno e sua aplicação como absorvedor saturável em lasers à fibra dopada com érbio. 2015. 128 f. Thesis (Doctorate in electrical engineering) - Mackenzie Presbyterian University, São Paulo (2015)

    Google Scholar 

  5. Coroş, M., Pogăcean, F., Măgeruşan, L., et al.: A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. F. Mater. Sci. 13, 23–32 (2019). https://doi.org/10.1007/s11706-019-0452-5

    Article  Google Scholar 

  6. Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48(8), 2150 (2010). Elsevier. https://doi.org/10.1016/j.carbon.2010.01.058

  7. Quintana, M., Tapia, J.I., Prato, M.: Liquid-phase exfoliated graphene: functionalization, characterization, and applications. Beilstein J. Nanotechnol. Beilstein, J. Nanotechnol. 2328–2338 (2014). https://doi.org/10.3762/bjnano.5.242

  8. Nascimento, J.P.: Esfoliação Química do Grafite Natural em mistura de solventes orgânicos: a obtenção de grafenos de poucas camadas. 2013. 105f. Thesis (Master). Nuclear Technology Development Center. Minas Gerais (2013)

    Google Scholar 

  9. Kadari, M., Belarbi, M., Belarbi, E.H., Chaker, Y.: Nano-sensor based on ionic liquid functionalized graphene modified electrode for sensitive detection of tetrahydrofuran. In: Hatti, M. (eds.) Artificial Intelligence in Renewable Energetic Systems. ICAIRES 2017. Lecture Notes in Networks and Systems, vol 35. Springer, Cham. (2018). https://doi.org/10.1007/978-3-319-73192-6_51

  10. Azizighannad, S., Mitra, S. Ss. Reduction of Graphene Oxide (GO) and its effects on chemical and colloidal properties. Sci. Rep. 8, 10083 (2018). https://doi.org/10.1038/s41598-018-28353-6 https://creativecommons.org/licenses/by/4.0/.

  11. Shaikh, T.H., Ruigang, W.: Electrochemical Exfoliation of Graphite: Effect of Temperature and Hydrogen Peroxide Addition. Electrochim. Acta 216, 253–260 (2016). https://doi.org/10.1016/j.electacta.2016.09.022

    Article  CAS  Google Scholar 

  12. Camargos, J.S.F, Semmer, A.O., Silva, S.N.: Characteristics and applications of graphene oxide and main routes for synthesis (2017). https://doi.org/10.18540/jecev13iss8pp1118-1130

  13. Lu, X., Jin, X., Sun, J.: Advances of Graphene application in electrode materials for lithium ion battery. Sci. China Technol. Sci. 58, 1829–1840 (2015). https://doi.org/10.1007/s11431-015-5927-8

    Article  CAS  Google Scholar 

  14. Zhou, X., Yin, Y.X., Wan, L.J., et al.: Self-assembled nanocomposite of silicon nanoparticles encapsulated in Graphene through electrostatic attraction for lithium-ion batteries. Adv. Energy Mater. 2, 1086–1090 (2012). https://doi.org/10.1002/aenm.201200158

    Article  CAS  Google Scholar 

  15. Yi, R., Zai, J., Dai, F., et al.: Dual conductive network-enabled Graphene/Si-C composite anode with high areal capacity for lithium-ion batteries. Nano Energy 6, 211–218 (2014). https://doi.org/10.1016/j.nanoen.2014.04.006

    Article  CAS  Google Scholar 

  16. Jiang, L., Fan, Z.: Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 6, 1922–1945 (2014). https://doi.org/10.1039/C3NR04555B

    Article  CAS  Google Scholar 

  17. Hu, X., Wang, Y., Wu, P., et al.: Preparation of graphene/graohene nanoribbons hybrid aerogel and its application for the removal of uranium from aqueous solutions. J. Radioanal. Nucl. Chem. 325, 207–215 (2020). https://doi.org/10.1007/s10967-020-07208-3

    Article  CAS  Google Scholar 

  18. Wang, X., Yu, S., Jin, J., et al.: Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions. Sci. Bull. 61, 1583–1593 (2016). https://doi.org/10/1007/s11434-016-1168-x

    Google Scholar 

  19. Fathima, N., Pradeep, N., Balakrishnan, J.: Green synthesis of graphene quantum dots and the dual application of graphene quantum dots-decorated flexible MSM p-type ZnO device as UV photodetector and piezotronic generator. Bull. Mater. Sci. 44 (2021). https://doi.org/10.1007/s12034-020-02326-w

  20. Ghosh, D., Sarkar, K., Devi, P., Kim, K., Kumar, P.: Current and future persperspectives for carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices. Renew. Sustain. Energy Rev. 135 (2021). https://doi.org/10.1016/j.rser.2020.110391

  21. Han, C., Li, H., Chen, J., Li, B., Wong, C.P.P.: Graphene-based materials with tailored nanostructures for lithium-ion batteries. In: Wong, C.P.P., Moon, K., Li, Y. (eds.) Nano-Bio-Electronic, Photonic and MEMS Packaging. Springer, Cham . 10/1007/978–3–030–49991–4_21

    Google Scholar 

  22. Alencar, E., Santana, D.: Processos De Obtenção Do Grafeno, Suas Aplicações E Sua Importância Para O Brasil. Oswaldo Cruz Graduate Center, São Paulo (2016). https://doi.org/10.31510/infa.v17i1.786

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, C.K.A., Alves, A.K. (2022). Graphene Application. In: Kopp Alves, A. (eds) Technological Applications of Nanomaterials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-86901-4_12

Download citation

Publish with us

Policies and ethics