Skip to main content

A Heuristic Approach to the Treedepth Decomposition Problem for Large Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2021)

Abstract

In this article, we describe algorithms and techniques used in the method ExTREEm for the treedepth decomposition problem. ExTREEm won the heuristic track of the 5th Parameterized Algorithms and Computational Experiments Challenge (PACE 2020). It searches for a minimum-height treedepth decomposition of a graph via computing graph separators. Among concepts that are incorporated into the approach, we can distinguish a new objective function for evaluating separators, preprocessing based on finding treedepth decompositions in cactus subgraphs and on identification of graphlets, five algorithms for finding separators, a separator minimization method for a refinement of found separators, and a refinement of an obtained treedepth decomposition by merging techniques of tree rotations. This approach enables us to quickly obtain low-depth decompositions of very large graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ExTREEm is available at https://doi.org/10.5281/zenodo.3873126.

  2. 2.

    https://pacechallenge.org/2020/results/#heuristic-track.

  3. 3.

    https://pacechallenge.org/files/pace2020-heur-public.tgz.

References

  1. Aspvall, B., Heggernes, P.: Finding minimum height elimination trees for interval graphs in polynomial time. BIT Numer. Math. 34, 484–509 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bannach, M., Berndt, S., Schuster, M., Wienobst, M.: Solver description of Fluid. In: 5th Parameterized Algorithms and Computational Experiments Challenge, PACE 2020 (2020). https://doi.org/10.5281/zenodo.3871709

  3. Castillo-Garcia, N., Fraire-Huacuja, H., Flores, J., Rangel, R., Gonzalez Barbosa, J., Carpio Valadez, J.: Comparative study on constructive heuristics for the vertex separation problem. Stud. Comput. Intell. 601, 465–474 (2015)

    Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  5. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271–282. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07959-2_23

    Chapter  Google Scholar 

  6. Galler, B.A., Fisher, M.J.: An improved equivalence algorithm. Commun. ACM 7, 301–303 (1964). 364099.364331

    Google Scholar 

  7. Gupta, A.: Sparse direct methods. In: Padua, D. (ed.) Encyclopedia of Parallel Computing, pp. 1877–1886. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-09766-4_507

    Chapter  Google Scholar 

  8. Gutin, G., Jones, M., Wahlstrom, M.: The mixed Chinese postman problem parameterized by pathwidth and treedepth. SIAM J. Discret. Math. 30, 2177–2205 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hamann, M., Strasser, B.: Graph bisection with pareto-optimization. In: Proceedings of the Meeting on Algorithm Engineering and Experiments, ALENEX 2016, Arlington, USA, pp. 90–102 (2016.) https://doi.org/10.1137/1.9781611974317.8

  10. Karpas, I., Neiman, O., Smorodinsky, S.: On vertex rankings of graphs and its relatives. Discret. Math. 338, 1460–1467 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, J.W.: Reordering sparse matrices for parallel elimination. Parallel Comput. 11, 73–91 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Manne, F.: An algorithm for computing an elimination tree of minimum height for a tree. Preprint at ResearchGate (1998)

    Google Scholar 

  13. Nesetril, J., de Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27875-4

    Book  MATH  Google Scholar 

  14. Pieck, J.: Formele definitie van een e-tree. Technische Hogeschool Eindhoven, memorandum 80–06 (1980)

    Google Scholar 

  15. Schrijver, A.: A course in combinatorial optimization. Preprint at ResearchGate (2003)

    Google Scholar 

  16. Strasser, B.: FlowCutter. In: 5th Parameterized Algorithms and Computational Experiments Challenge, PACE 2020 (2020). https://github.com/ben-strasser/flow-cutter-pace20

  17. Trimble, J.: Tweed: a heuristic solver for treedepth. In: 5th Parameterized Algorithms and Computational Experiments Challenge, PACE 2020 (2020). https://doi.org/10.5281/zenodo.3881441

  18. Wrochna, M.: Sallow - a heuristic algorithm for treedepth decompositions. In: 5th Parameterized Algorithms and Computational Experiments Challenge, PACE 2020, preprint arXiv:2006.07050 (2020). https://doi.org/10.5281/zenodo.3870565

  19. Yaveroglu, O., Fitzhugh, S., Kurant, M., Markopoulou, A., Butts, C., Przulj, N.: Ergm.graphlets: a package for ERG modeling based on graphlet statistics. J. Stat. Softw. 65 (2014)

    Google Scholar 

  20. Proceedings of the 15th International Symposium on Parameterized and Exact Computation, IPEC 2020, Leibniz International Proceedings in Informatics 180 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwester Swat .

Editor information

Editors and Affiliations

Appendix A

Appendix A

Let us define

$$\begin{aligned} score_n(S)&= |S| \cdot \frac{ 1 - \beta ^{ \lceil - \frac{\log |V|}{\log \beta } \rceil } }{1 - \beta }, \;\;\; \text { where } \beta = \frac{mn(G,S)}{|V|}, \\ score_e(S)&= |S| \cdot \frac{ 1 - \gamma ^{ \lceil - \frac{\log |E|}{\log \gamma } \rceil } }{1 - \gamma }, \;\;\; \text { where } \gamma = \frac{me(G,S)}{|E|}. \end{aligned}$$

We now show why the proposed objective functions \(score_n(S)\) and \(score_e(S)\) estimate the height of a treedepth decomposition. We specify only the case of \(score_n(S)\), arguments for \(score_e(S)\) are analogous.

Let S be a separator of a graph \(G=(V,E)\), \(\alpha = \frac{|S|}{|V|}\), \(\beta = \frac{mn(G,S)}{|V|}\), and let \(EH(G,\alpha ,\beta )\) be a function that estimates the height of a sought decomposition T(G). It is calculated on the basis of values \(\alpha \) and \(\beta \), that is on information that we can obtain knowing only graph G and separator S. For each \(C \in C(G,S)\) the decomposition T(C) will be attached to some node from the set \(S \cap N(C)\) (see Sect. 3.5), therefore we use the following estimation:

$$\begin{aligned}&EH(G,\alpha ,\beta ) \le |S| + \max \limits _{C \in C(G,S)} h(T(C)) = \alpha \cdot |V| + \max \limits _{C \in C(G,S)} h(T(C)) \end{aligned}$$

Assuming that in each recursive call the values of parameters \(\alpha \) and \(\beta \) do not change, we can replace h(T(C)) with \(EH(C,\alpha , \beta )\) to obtain the following assessment:

$$\begin{aligned} EH(G,\alpha ,\beta )&\le \alpha \cdot |V| + \max \limits _{C \in C(G,S)} h(T(C)) \\&\approx \alpha \cdot |V| + \max \limits _{C \in C(G,S)} EH( C, \alpha , \beta ) \\&\approx \alpha \cdot |V| + \alpha \cdot \beta \cdot |V| + \max \limits _{C' \in C(C,S')}EH(C',\alpha ,\beta ) \\&\approx \alpha \cdot |V| + \alpha \cdot \beta \cdot |V| + \alpha \cdot \beta ^2 \cdot |V| + \ldots \\&\approx \sum \limits _{i=0}^{ \lceil \log _{ \beta ^{-1} }|V| \rceil } \alpha \cdot |V| \cdot \beta ^i = \alpha \cdot |V| \cdot \sum \limits _{i=0}^{ \lceil -\frac{\log |V|}{\log \beta } \rceil } \beta ^i \\&\approx |S| \cdot \frac{ 1 - \beta ^{ \lceil - \frac{\log |V|}{\log \beta } \rceil } }{1 - \beta } \end{aligned}$$

Let us note here that the formulas for the objective functions can be further simplified via the estimation \({\beta ^{ \lceil \log _{\beta ^{-1}}|V| \rceil } \approx \beta ^{ \log _{\beta ^{-1}}|V| } = \frac{1}{|V|} }\). We found, however, test cases where the replacement made a difference to the evaluation of separators.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Swat, S., Kasprzak, M. (2021). A Heuristic Approach to the Treedepth Decomposition Problem for Large Graphs. In: Kowalik, Ł., Pilipczuk, M., Rzążewski, P. (eds) Graph-Theoretic Concepts in Computer Science. WG 2021. Lecture Notes in Computer Science(), vol 12911. Springer, Cham. https://doi.org/10.1007/978-3-030-86838-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86838-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86837-6

  • Online ISBN: 978-3-030-86838-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics