Skip to main content

Abstract

Fracture toughness of an engineering material is an essential parameter for the damage and the safety assessment of a structure exposed to different loading conditions in applications like defense, automotive, and aircraft structure. In this article, an effort is made to evaluate the fracture toughness of AA7475-T7351 alloy under different loading rates. Single edge three-point bend experiments are conducted at four different loading rates 1 mm/min, 10 mm/min, 100 mm/min, and 1000 mm/min. Quasi-static experiments are conducted using two different electromechanical universal testing machines (Zwick-Roll/Z-50 and MTS). Quasi-static initiation and propagation fracture toughness are evaluated from the load vs. crack mouth opening displacement (CMOD) diagram. It is observed that the fracture toughness of the material increases with the increase of loading rates. The fracture propagation toughness of the material also shows a positive sensitivity towards the loading rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tabei, A., Shih, D.S., Garmestani, H., Liang, S.Y.: Dynamic recrystallization of Al alloy 7075 in turning. J. Manuf. Sci. Eng. 138(7) (2016)

    Google Scholar 

  2. Driemeier, L., Brünig, M., Micheli, G., Alves, M.: Experiments on stress-triaxiality dependence of material behavior of aluminum alloys. Mech. Mater. 42(2), 207–217 (2010)

    Article  Google Scholar 

  3. Teimouri, R., Amini, S., Mohagheghian, N.: Experimental study and empirical analysis on effect of ultrasonic vibration during rotary turning of aluminum 7075 aerospace alloy. J. Manuf. Process. 26, 1–12 (2017)

    Article  Google Scholar 

  4. Rusinek, A., Klepaczko, J.R.: Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress. Int. J. Plast. 17(1), 87–115 (2001)

    Article  CAS  Google Scholar 

  5. Nemat-Nasser, S., Guo, W.G.: Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures. Mech. Mater. 35(11), 1023–1047 (2003)

    Article  Google Scholar 

  6. Cavaliere, P., Squillace, A.: High temperature deformation of friction stir processed 7075 aluminium alloy. Mater. Charact. 55(2), 136–142 (2005)

    Article  CAS  Google Scholar 

  7. Taleghani, M.J., Navas, E.R., Salehi, M., Torralba, J.M.: Hot deformation behaviour and flow stress prediction of 7075 aluminium alloy powder compacts during compression at elevated temperatures. Mater. Sci. Eng. A. 534, 624–631 (2012)

    Article  Google Scholar 

  8. Bacon, C., Färm, J., Lataillade, J.L.: Dynamic fracture toughness determined from load- point displacement. Exp. Mech. 34(3), 217–223 (1994)

    Article  Google Scholar 

  9. Rubio, L., Fernández-Sáez, J., Navarro, C.: Determination of dynamic fracture-initiation toughness using three-point bending tests in a modified Hopkinson pressure bar. Exp. Mech. 43(4), 379–386 (2003)

    Article  Google Scholar 

  10. Xing, M.Z., Wang, Y.G., Jiang, Z.X.: Dynamic fracture behaviors of selected aluminum alloys under three-point bending. Defence Technol. 9(4), 193–200 (2013)

    Article  CAS  Google Scholar 

  11. Singh, R.P., Parameswaran, V.: An experimental investigation of dynamic crack propagation in a brittle material reinforced with a ductile layer. Opt. Lasers Eng. 40(4), 289–306 (2003)

    Article  Google Scholar 

  12. Gálvez, F., Cendon, D., García, N., Enfedaque, A., Sánchez-Gálvez, V.: Dynamic fracture toughness of a high strength armor steel. Eng. Fail. Anal. 16(8), 2567–2575 (2009)

    Article  Google Scholar 

  13. Chen, Y., Pedersen, K.O., Clausen, A.H., Hopperstad, O.S.: An experimental study on the dynamic fracture of extruded AA6xxx and AA7xxx aluminium alloys. Mater. Sci. Eng. A. 523(1–2), 253–262 (2009)

    Article  Google Scholar 

  14. Huang, S., Luo, S., Xia, K.: Dynamic fracture initiation toughness and propagation toughness of PMMA. In: Proceedings of the SEM annual conference, Albuquerque, pp. 1–4 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purnashis Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Society for Experimental Mechanics

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborty, P., Pandouria, A.K., Kumar, S., Singha, M.K., Tiwari, V. (2022). Initiation and Propagation Fracture Toughness of AA7475-T7651 Under Different Loading Conditions. In: Chalivendra, V., Beese, A.M., Berke, R.B. (eds) Mechanics of Composite, Hybrid and Multifunctional Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-86741-6_2

Download citation

Publish with us

Policies and ethics