Skip to main content

Functional Chemoanatomy of PACAP in Neuroendocrine and Neuronal Circuits

  • Chapter
  • First Online:
Neuroanatomy of Neuroendocrine Systems

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 12))

  • 977 Accesses

Abstract

Pituitary adenylate cyclase-activated polypeptide was discovered as a peptide highly concentrated in the hypothalamus, via screening of hypothalamic extracts for their ability to affect cAMP-dependent hormone secretion from the anterior pituitary. However, PACAP is also expressed widely within specific subsets of neurons in brain and periphery in adult mammals, and before midgestation during development. Some important themes connect PACAP neuroanatomy to PACAP function: (1) PACAP is located within groups of neurons that mediate functions such as stress and threat responses, carried out through multiple circuits and even large neuronal networks, (2) PACAP may act at different receptors and via different modes of transmission depending upon location and stage of development, and (3) PACAP likely acts in concert with co-released co-transmitters both centrally and peripherally.

Limei Zhang acknowledges support from UNAM (IN216918 and GI200121) and CONACyT (CB238744 and CB283279) and Lee Eiden from the NIMH Intramural Research Program (MH02386).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACA:

anterior cingulate area

AHN:

anterior hypothalamic nucleus

AM:

anteromedial nucleus

AON:

anterior olfactory nucleus

ARC:

arcuate nucleus

avMLPA:

anteroventral medial and lateral preoptic area

BAC:

bed nucleus of anterior commissure

BNST:

bed nucleus of stria terminalis

CBgcl:

granular layer of cerebellum

CBpj:

Purkinje layer of cerebellum

CNS:

central nervous system

DB:

diagonal band

DH:

dorsal hippocampus proper

DISH:

dual in situ hybridization histochemistry

DMH:

dorsomedial nucleus of the hypothalamus

DP:

dorsal peduncular area

DRG:

dorsal root ganglia

FN:

fastigial nucleus of the cerebellum

GCL:

granule cell layer of hippocampus

GRN:

gigantocellular reticular nucleus

HC:

hippocampus

IC:

inferior colliculus

ILA:

infralimbic area

IO:

inferior olivary nucleus

IPN:

interpeduncular nucleus

KF:

Kölliker-Fuse nucleus

LSc:

lateral septum caudal

LSr:

lateral septal nucleus rostral

MBO:

mammillary body

MD:

mediodorsal nucleus of thalamus

MEPO:

median preoptic nucleus of hypothalamus

MHb:

medial habenula

MOB:

main olfactory bulb

MOs:

secondary motor area

MLPA:

mediolateral preoptic area

MPO:

medial preoptic area

MS:

medial septal nucleus

MV:

medial vestibular nucleus

NAc:

nucleus accumbens

NDB:

diagonal band nucleus

NTS:

nucleus tractus solitarius

ORB:

orbital area

OT:

olfactory tract

PACAP:

pituitary adenylate cyclase-activating polypeptide

PACAP KO:

PACAP knock-out mice

PAC1:

PACAP receptor 1

PAG:

periaqueductal gray

PBN:

parabrachial nucleus

PCG:

pontine central grey

PCL:

Purkinje cell layer

PF:

parafascicular nucleus

PH:

posterior hypothalamic nucleus

PG:

pontine grey

PL:

prelimbic area

PMV:

premammillary nucleus ventral part

PNS:

peripheral nervous system

PRC:

precommissural nucleus

PRNr:

pontine reticular nucleus

PVN:

paraventricular nucleus of hypothalamus

PVp:

periventricular hypothalamic nucleus, posterior part

PVT:

paraventricular nucleus of thalamus

RGC:

retinal ganglion cell

RL:

rostral linear nucleus raphe

RPa:

raphe pallidus

RSP:

retrosplenial area

SCm:

superior colliculus, motor related

SCN:

suprachiasmatic nucleus

SCs:

superior colliculus, sensory related

SMA:

somatomotor area

SO:

supraoptic nucleus

SPF:

subparafascicular nucleus

SN:

substantia nigra

STN:

subthalamic nucleus

SUM:

supramammillary nucleus

TTv:

taenia tecta ventral

VMN:

ventromedial nucleus of hypothalamus

VTA:

ventral tegmental area

References

  • Abad C, Gomariz RP, Waschek JA (2006) Neuropeptide mimetics and antagonists in the treatment of inflammatory disease: focus on VIP and PACAP. Curr Top Med Chem 6(2):151–163

    Article  PubMed  Google Scholar 

  • Abad C, Jayaram B, Becquet L, Wang Y, O’Dorisio MS, Waschek JA, Tan YV (2016) VPAC1 receptor (Vipr1)-deficient mice exhibit ameliorated experimental autoimmune encephalomyelitis, with specific deficits in the effector stage. J Neuroinflammation 13(1):169

    Article  PubMed  PubMed Central  Google Scholar 

  • Allais A, Burel D, Isaac ER, Gray SL, Basille M, Ravni A, Sherwood NM, Vaudry H, Gonzalez BJ (2007) Altered cerebellar development in mice lacking pituitary adenylate cyclase-activating polypeptide. Eur J Neurosci 25(9):2604–2618

    Article  PubMed  Google Scholar 

  • Arimura A (1992) Pituitary adenylate cyclase-activating polypeptide (PACAP): discovery and current status of research. Regul Peptides 37:287–303

    Article  Google Scholar 

  • Arimura A (1998) Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jap J Physiol 48:301–331

    Article  Google Scholar 

  • Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C (1991) Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 129(5):2787–2789

    Article  PubMed  Google Scholar 

  • Armstrong BD, Abad C, Chhith S, Cheung-Lau G, Hajji OE, Nobuta H, Waschek JA (2008) Impaired nerve regeneration and enhanced neuroinflammatory response in mice lacking pituitary adenylyl cyclase activating peptide. Neuroscience 151(1):63–73

    Article  PubMed  Google Scholar 

  • Bakalar D, Sweat S, Drossel G, Jiang SZ, Samal BS, Stroth N, Xu W, Zhang L, Zhang H, Eiden LE (2022) Relationship between constitutive and acute gene regulation, and physiological and behavioral responses, mediated by the neuropeptide PACAP. Psychoneuroendocrinology 135:105447

    Article  PubMed  Google Scholar 

  • Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17(9):379–389

    Article  PubMed  Google Scholar 

  • Banki E, Pakai E, Gaszner B, Zsiboras C, Czett A, Bhuddi PR, Hashimoto H, Toth G, Tamas A, Reglodi D, Garami A (2014) Characterization of the thermoregulatory response to pituitary adenylate cyclase-activating polypeptide in rodents. J Mol Neurosci 54(3):543–554

    Article  PubMed  Google Scholar 

  • Basille M, Falluel-Morel A, Vaudry D, Aubert N, Fournier A, Freger P, Gallo-Payet N, Vaudry H, Gonzalez B (2006) Ontogeny of PACAP receptors in the human cerebellum: perspectives of therapeutic applications. Regul Pept 137(1–2):27–33

    Article  PubMed  Google Scholar 

  • Beaudet MM, Braas KM, May V (1998) Pituitary adenylate cyclase activating polypeptide (PACAP) expression in sympathetic preganglionic projection neurons to the superior cervical ganglion. J Neurobiol 36:325–336

    Article  PubMed  Google Scholar 

  • Beaule C, Mitchell JW, Lindberg PT, Damadzic R, Eiden LE, Gillette MU (2009) Temporally restricted role of retinal PACAP: integration of the phase-advancing light signal to the SCN. J Biol Rhythm 24(2):126–134

    Article  Google Scholar 

  • Berton O, Covington HE 3rd, Ebner K, Tsankova NM, Carle TL, Ulery P, Bhonsle A, Barrot M, Krishnan V, Singewald GM, Singewald N, Birnbaum S, Neve RL, Nestler EJ (2007) Induction of deltaFosB in the periaqueductal gray by stress promotes active coping responses. Neuron 55(2):289–300

    Article  PubMed  Google Scholar 

  • Bienkowski MS, Bowman I, Song MY, Gou L, Ard T, Cotter K, Zhu M, Benavidez NL, Yamashita S, Abu-Jaber J, Azam S, Lo D, Foster NN, Hintiryan H, Dong H-W (2018) Integration of gene expression and brain-wide connectivity reveals the multiscale organization of mouse hippocampal networks. Nat Neurosci 21:1628–1643

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandenburg CA, May V, Braas KM (1997) Identification of endogenous sympathetic neuron pituitary adenylate cyclase-activating polypeptide (PACAP): depolarization regulates production and secretion through induction of multiple neuropeptide transcripts. J Neurosci 17:4045–4055

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown CH, Ludwig M, Tasker JG, Stern JE (2020) Somato-dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation. J Neuroendocrinol 32(6):e12856

    Article  PubMed  PubMed Central  Google Scholar 

  • Cameron DB, Galas L, Jiang Y, Raoult E, Vaudry D, Komuro H (2007) Cerebellar cortical-layer-specific control of neuronal migration by pituitary adenylate cyclase-activating polypeptide. Neuroscience 146(2):697–712

    Article  PubMed  Google Scholar 

  • Campos CA, Bowen AJ, Schwartz MW, Palmiter RD (2016) Parabrachial CGRP neurons control meal termination. Cell Metab 23(5):811–820

    Article  PubMed  PubMed Central  Google Scholar 

  • Carbone E, Borges R, Eiden LE, Garcia AG, Hernandez-Cruz A (2019) Chromaffin cells of the adrenal medulla: physiology, pharmacology, and disease. Compr Physiol 9(4):1443–1502

    Article  PubMed  Google Scholar 

  • Carter ME, Soden ME, Zweifel LS, Palmiter RD (2013) Genetic identification of a neural circuit that suppresses appetite. Nature 503(7474):111–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter ME, Han S, Palmiter RD (2015) Parabrachial calcitonin gene-related peptide neurons mediate conditioned taste aversion. J Neurosci 35(11):4582–4586

    Article  PubMed  PubMed Central  Google Scholar 

  • Champagne D, Beaulieu J, Drolet G (1998) CRFergic innervation of the paraventricular nucleus of the rat hypothalamus: a tract-tracing study. J Neuroendocrinol 10(2):119–131

    Article  PubMed  Google Scholar 

  • Chiang MC, Bowen A, Schier LA, Tupone D, Uddin O, Heinricher MM (2019) Parabrachial complex: a hub for pain and aversion. J Neurosci 39(42):8225–8230

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi DC, Furay AR, Evanson NK, Ostrander MM, Ulrich-Lai YM, Herman JP (2007) Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J Neurosci 27(8):2025–2034

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi DC, Evanson NK, Furay AR, Ulrich-Lai YM, Ostrander MM, Herman JP (2008) The anteroventral bed nucleus of the stria terminalis differentially regulates hypothalamic-pituitary-adrenocortical axis responses to acute and chronic stress. Endocrinology 149(2):818–826

    Article  PubMed  Google Scholar 

  • Coenen OJMD, Sejnowski TJ (1995) Learning to make predictions in the cerebellum may explain the anticipatory modulation of the vesitbul-ocular reflex (VOR) gai with vergence. Proceedings of the 3rd Joint Symposium on Neural Computation, pp 1–20

    Google Scholar 

  • Colwell CS, Waschek JA (2001) Role of PACAP in circadian function of the SCN. Regul. Peptides 102:49–68

    Google Scholar 

  • Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelievre V, Hu Z, Waschek JA (2004) Selective deficits in the circadian light response in mice lacking PACAP. Am J Physiol Regul Integr Comp Physiol 287(5):R1194–R1201

    Article  PubMed  Google Scholar 

  • Costa L, Santangelo F, Volsi GL, Ciranna L (2009) Modulation of AMPA receptor-mediated ion current by pituitary adenylate cyclase-activating polypeptide (PACAP) in CA1 pyramidal neurons from rat hippocampus. Hippocampus 19(1):99–109

    Article  PubMed  Google Scholar 

  • Coupland RE (1965) Electron microscopic observations on the structure of the rat adrenal medulla: II. Normal innervation. J Anat 99(Pt 2):255–272

    PubMed  PubMed Central  Google Scholar 

  • Cymerblit-Sabba A, Smith AS, Williams Avram SK, Stackmann M, Korgan AC, Tickerhoof MC, Young WS (2020) Inducing partner preference in mice by Chemogenetic stimulation of CA2 hippocampal subfield. Front Mol Neurosci 13:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng H, Xiao X, Wang Z (2016) Periaqueductal Gray neuronal activities underlie different aspects of defensive behaviors. J Neurosci 36(29):7580–7588

    Article  PubMed  PubMed Central  Google Scholar 

  • Diane A, Nikolic N, Rudecki AP, King SM, Bowie DJ, Gray SL (2014) PACAP is essential for the adaptive thermogenic response of brown adipose tissue to cold exposure. J Endocrinol 222(3):327–339

    Article  PubMed  Google Scholar 

  • DiCicco-Bloom E, Lu NR, Pintar JE, Wang JW (1998) The PACAP ligand/receptor system regulates cerebral cortical neurogenesis. Ann N Y Acad Sci 865:274–289

    Article  PubMed  Google Scholar 

  • DiCicco-Bloom E, Deutsch PJ, Maltzman J, Zhang J, Pintar JE, Zheng J, Friedman WF, Zhou X, Zaremba T (2000) Autocrine expression and ontogenetic functions of the PACAP ligand/receptor system during sympathetic development. Dev Biol 219(2):197–213

    Article  PubMed  Google Scholar 

  • Dickinson T, Fleetwood-Walker SM (1999) VIP and PACAP: very important in pain? TIPS 20:324–329

    PubMed  Google Scholar 

  • Dore R, Iemolo A, Smith KL, Wang X, Cottone P, Sabino V (2013) CRF mediates the anxiogenic and anti-rewarding, but not the anorectic effects of PACAP. Neuropsychopharmacology 38(11):2160–2169

    Article  PubMed  PubMed Central  Google Scholar 

  • Drescher MJ, Drescher DG, Khan KM, Hatfield JS, Ramakrishnan NA, Abu-Hamdan MD, Lemonnier LA (2006) Pituitary adenylyl cyclase-activating polypeptide (PACAP) and its receptor (PAC1-R) are positioned to modulate afferent signaling in the cochlea. Neuroscience 142(1):139–164

    Article  PubMed  Google Scholar 

  • Dumont EC (2009) What is the bed nucleus of the stria terminalis? Prog Neuro-Psychopharmacol Biol Psychiatry 33(8):1289–1290

    Article  Google Scholar 

  • Eftekhari S, Salvatore CA, Johansson S, Chen TB, Zeng Z, Edvinsson L (2015) Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood-brain barrier. Brain Res 1600:93–109

    Article  PubMed  Google Scholar 

  • Eiden LE, Jiang SZ (2018) What’s new in endocrinology: the chromaffin cell. Front Endocrinol (Lausanne) 9:711

    Article  PubMed  Google Scholar 

  • Elde R, Haber S, Ho R, Holets V, de Lanerolle N, Maley B, Micevych P, Seybold V (1980) Interspecies conservation and variation in peptidergic neurons. Peptides 1:21–26

    Article  Google Scholar 

  • Elsas T, Uddman R, Sundler F (1996) Pituitary adenylate cyclase-activating peptide-immunoreactive nerve fibers in the cat eye. Graefes Arch Clin Exp Ophthalmol 234(9):573–580

    Article  PubMed  Google Scholar 

  • Emery AC, Eiden LE (2012) Signaling through the neuropeptide GPCR PAC1 induces neuritogenesis via a single linear cAMP- and ERK-dependent pathway using a novel cAMP sensor. FASEB J 26:3199–3211

    Article  PubMed  PubMed Central  Google Scholar 

  • Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N (2020) The lateral hypothalamus: an uncharted territory for processing peripheral neurogenic inflammation. Front Neurosci 14:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulop BD, Sandor B, Szentleleky E, Karanyicz E, Reglodi D, Gaszner B, Zakany R, Hashimoto H, Juhasz T, Tamas A (2018) Altered notch signaling in developing molar teeth of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP)-deficient mice. J Mol Neurosci 68(3):377–388

    Article  PubMed  Google Scholar 

  • Galas L, Benard M, Lebon A, Komuro Y, Schapman D, Vaudry H, Vaudry D, Komuro H (2017) Postnatal migration of cerebellar interneurons. Brain Sci 7(6):62

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghatei MA, Takahashi K, Suzuki Y, Gardiner J, Jones PM, Bloom SR (1993) Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J Endocrinol 136:159–166

    Article  PubMed  Google Scholar 

  • Gonzalez BJ, Leroux P, Basille M, Bodenant C, Vaudry H (1994) Somatostatin and pituitary adenylate cyclasae-activating polypeptide (PACAP): two neuropeptides potentially involved in the development of the rat cerebellum. Ann d’Endocrinol 55:243–247

    Google Scholar 

  • Gonzalez BJ, Basille M, Vaudry D, Fournier A, Vaudry H (1997) Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience 78:419–430

    Article  PubMed  Google Scholar 

  • Goodrich M, Armour AC, Panchapakesan K, You X, Devaney J, Knoblach S, Sullivan CAW, Herrero MJ, Gupta AR, Vaidya CJ, Kenworthy L, Corbin JG (2019) PAC1R genotype to phenotype correlations in autism Spectrum disorder. Autism Res 12(2):200–211

    Article  PubMed  Google Scholar 

  • Goto T, Iwai H, Kuramoto E, Yamanaka A (2017) Neuropeptides and ATP signaling in the trigeminal ganglion. Jpn Dent Sci Rev 53(4):117–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray SL, Cummings KJ, Jirik FR, Sherwood NM (2001) Targeted disruption of the pituitary adenylate cyclase-activating polypeptide gene results in early postnatal death associated with dysfunction of lipid and carbohydrate metabolism. Mol Endocrinol 15:1739–1747

    Article  PubMed  Google Scholar 

  • Gray SL, Yamaguchi N, Vencova P, Sherwood NM (2002) Temperature-sensitive phenotype in mice lacking pituitary adenylate cyclase-activating polypeptide. Endocrinology 143(10):3946–3954

    Article  PubMed  Google Scholar 

  • Grinevich V, Fournier A, Pelletier G (1997) Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on corticotropin-releasing hormone (CRH) gene expression in the rat hypothalamic paraventricular nucleus. Brain Res 773(1–2):190–196

    Article  PubMed  Google Scholar 

  • Gupta A, Gargiulo AT, Curtis GR, Badve PS, Pandey S, Barson JR (2018) Pituitary adenylate cyclase-activating Polypeptide-27 (PACAP-27) in the thalamic paraventricular nucleus is stimulated by ethanol drinking. Alcohol Clin Exp Res 42(9):1650–1660

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamelink C, Tjurmina O, Damadzic R, Young WS, Weihe E, Lee H-W, Eiden LE (2002) Pituitary adenylate cyclase activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proc Natl Acad Sci U S A 99:461–466

    Article  PubMed  Google Scholar 

  • Hamelink C, Weihe E, Eiden LE (2003) PACAP: an ‘emergency response’ co-transmitter in the adrenal medulla. In: Vaudry H, Arimura A (eds) Pituitary adenylate cyclase-activating polypeptide. Kluwer-Academic Press, Norwell, Massachusetts, pp 227–250

    Chapter  Google Scholar 

  • Hammack SE, May V (2015) Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry 78:167–177

    Article  PubMed  Google Scholar 

  • Hammack SE, Richey KJ, Watkins LR, Maier SF (2004) Chemical lesion of the bed nucleus of the stria terminalis blocks the behavioral consequences of uncontrollable stress. Behav Neurosci 118(2):443–448

    Article  PubMed  Google Scholar 

  • Hammack SE, Cheung J, Rhodes KM, Schutz KC, Falls WA, Braas KM, May V (2009) Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology 34(6):833–843

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammack SE, Roman CW, Lezak KR, Kocho-Shellenberg M, Grimmig B, Falls WA, Braas K, May V (2010) Roles for pituitary adenylate cyclase-activating peptide (PACAP) expression and signaling in the bed nucleus of the Stria terminalis (BNST) in mediating the behavioral consequences of chronic stress. J Mol Neurosci 42:327–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Han S, Soleiman MT, Soden ME, Zweifel LS, Palmiter RD (2015) Elucidating an affective pain circuit that creates a threat memory. Cell 162(2):363–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannibal J (2002) Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J Comp Neurol 453(4):389–417

    Article  PubMed  Google Scholar 

  • Hannibal J, Mikkelsen JD, Fahrenkrug J, Larsen PJ (1995) Pituitary adenylate cyclase-activating peptide gene expression in corticotropin-releasing factor-containing parvicellular neurons of the rat hypothalamic paraventricular nucleus is induced by colchicine, but not by adrenalectomy, acute osmotic, ether, or restraint stress. Endocrinology 136(9):4116–4124

    Article  PubMed  Google Scholar 

  • Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, Mikkelsen JD (1998) Pituitary adenylate cyclase activating peptide (PACAP) in the retinohypothalamic tract: a daytime regulator of the biological clock. Ann N Y Acad Sci 865:197–206

    Article  PubMed  Google Scholar 

  • Hannibal J, Hindersson P, Knudsen SM, Georg B, SM GBJF, Fahrenkrug J, B. H. Department of Clinical Biochemistry, University of Copenhagen, DK-2400 Copenhagen, Denmark (2002) The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci 22:RC191

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansel DE, May V, Eipper BA, Ronnett GV (2001) Pituitary adenylyl cyclase-activating peptides and alpha-amidation in olfactory neurogenesis and neuronal survival in vitro. J Neurosci 21:4625–4636

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashikawa Y, Stuber GD (2020) Transcriptional and spatial resolultion of cell types in the mammalian habenula. Neuron 106(5):743–758

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashimoto H, Shintani N, Tanaka K, Mori W, Hirose M, Matsuda T, Sakaue M, Miyazaki J, Niwa H, Tashiro F, Yamamoto K, Koga K, Tomimoto S, Kunugi A, Suetake S, Baba A (2001) Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci U S A 98(23):13355–13360

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawke Z, Ivanov TR, Bechtold DA, Dhillon H, Lowell BB, Luckman SM (2009) PACAP neurons in the hypothalamic ventromedial nucleus are targets of central leptin signaling. J Neurosci 29(47):14828–14835

    Article  PubMed  PubMed Central  Google Scholar 

  • Hegg CC, Au E, Roskams AJ, Lucero MT (2003) PACAP is present in the olfactory system and evokes calcium transients in olfactory receptor neurons. J Neurophysiol 90(4):2711–2719

    Article  PubMed  Google Scholar 

  • Hirose M, Niewiadomski P, Tse G, Chi GC, Dong H, Lee A, Carpenter EM, Waschek JA (2011) Pituitary adenylyl cyclase-activating peptide counteracts hedgehog-dependent motor neuron production in mouse embryonic stem cell cultures. J Neurosci Res 89(9):1363–1374

    Article  PubMed  PubMed Central  Google Scholar 

  • Holgert H, Holmberg K, Hannibal J, Fahrenkrug J, Brimijoin S, Hartman BK, Hökfelt T (1996) PACAP in the adrenal gland--relationship with choline acetyltransferase, enkephalin and chromaffin cells and effects of immunological sympathectomy. Neuroreport 20:297–301

    Article  Google Scholar 

  • Holighaus Y, Weihe E, Eiden LE (2012) STC1 induction by PACAP is mediated through cAMP and ERK1/2 but not PKA in cultured cortical neurons. J Mol Neurosci 46:75–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Hori M, Nakamachi T, Rakwal R, Shibato J, Ogawa T, Aiuchi T, Tsuruyama T, Tamaki K, Shioda S (2012) Transcriptomics and proteomics analyses of the PACAP38 influenced ischemic brain in permanent middle cerebral artery occlusion model mice. J Neuroinflammation 9:256

    Article  PubMed  PubMed Central  Google Scholar 

  • Hrvatin S, Sun S, Wilcox OF, Yao H, Lavin-Peter AJ, Cicconet M, Assad EG, Palmer ME, Aronson S, Banks AS, Griffith EC, Greenberg ME (2020) Neurons that regulate mouse torpor. Nature 583(7814):115–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurley MM, Maunze B, Block ME, Frenkel MM, Reilly MJ, Kim E, Chen Y, Li Y, Baker DA, Liu QS, Choi S (2016) Pituitary adenylate-cyclase activating polypeptide regulates hunger- and palatability-induced binge eating. Front Neurosci 10:383

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurley MM, Robble MR, Callan G, Choi S, Wheeler RA (2019) Pituitary adenylate cyclase-activating polypeptide (PACAP) acts in the nucleus accumbens to reduce hedonic drive. Int J Obes 43(4):928–932

    Article  Google Scholar 

  • Jiang SZ, Eiden LE (2016a) Activation of the HPA axis and depression of feeding behavior induced by restraint stress are separately regulated by PACAPergic neurotransmission in the mouse. Stress 19(4):374–382

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang SZ, Eiden LE (2016b) PACAPergic synaptic signaling and circuitry mediating mammalian responses to psychogenic and systemic stressors. In: Reglodi D, Tamas A (eds) Pituitary adenylate cyclase-activating polypeptide-PACAP, vol 11. Springer International, Switzerland

    Google Scholar 

  • Jongsma H, Pettersson LM, Zhang Y, Reimer MK, Kanje M, Waldenstrom A, Sundler F, Danielsen N (2001) Markedly reduced chronic nociceptive response in mice lacking the PAC1 receptor. Neuroreport 12(10):2215–2219

    Article  PubMed  Google Scholar 

  • Kano M, Shimizu Y, Suzuki Y, Furukawa Y, Ishida H, Oikawa M, Kanetaka H, Ichikawa H, Suzuki T (2011) Pituitary adenylatecyclase-activating polypeptide-immunoreactive nerve fibers in the rat epiglottis and pharynx. Ann Anat 193(6):494–499

    Article  PubMed  Google Scholar 

  • Kataoka N, Shima Y, Nakajima K, Nakamura K (2020) A central master driver of psychosocial stress responses in the rat. Science 367(6482):1105–1112

    Article  PubMed  Google Scholar 

  • Katayama T, Hattori T, Yamada K, Matsuzaki S, Tohyama M (2009) Role of the PACAP-PAC1-DISC1 and PACAP-PAC1-stathmin1 systems in schizophrenia and bipolar disorder: novel treatment mechanisms? Pharmacogenomics 10(12):1967–1978

    Article  PubMed  Google Scholar 

  • Kaur C, Ling E-A (2017) The circumventricular organs. Histol Histopathol 32:879–892

    PubMed  Google Scholar 

  • Kawaguchi C, Tanaka K, Isojima Y, Shintani N, Hashimoto H, Baba A, Nagai K (2003) Changes in light-induced phase shift of circadian rhythm in mice lacking PACAP. Biochem Biophys Res Commun 310(1):169–175

    Article  PubMed  Google Scholar 

  • Kawaguchi C, Isojima Y, Shintani N, Hatanaka M, Guo X, Okumura N, Nagai K, Hashimoto H, Baba A (2010) PACAP-deficient mice exhibit light parameter-dependent abnormalities on nonvisual photoreception and early activity onset. PLoS One 5(2):e9286

    Article  PubMed  PubMed Central  Google Scholar 

  • Khodai T, Nunn N, Worth AA, Feetham CH, Belle MDC, Piggins HD, Luckman SM (2018) PACAP neurons in the ventromedial hypothalamic nucleus are glucose inhibited and their selective activation induces Hyperglycaemia. Front Endocrinol (Lausanne) 9:632

    Article  PubMed  Google Scholar 

  • King SB, Lezak KR, O’Reilly M, Toufexis DJ, Falls WA, Braas K, May V, Hammack SE (2017) The effects of prior stress on anxiety-like responding to intra-BNST pituitary adenylate cyclase activating polypeptide in male and female rats. Neuropsychopharmacology 42(8):1679–1687

    Article  PubMed  PubMed Central  Google Scholar 

  • Kita T, Kita H (2012) The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J Neurosci 32(17):5990–5999

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight ZA, Tan K, Birsoy K, Schmidt S, Garrison JL, Wysocki RW, Emiliano A, Ekstrand MI, Friedman JM (2012) Molecular profiling of activated neurons by phosphorylated ribosome capture. Cell 151(5):1126–1137

    Article  PubMed  Google Scholar 

  • Kohl J, Babayan BM, Rubinstein ND, Autry AE, Marin-Rodriguez B, Kapoor V, Miyamishi K, Zweifel LS, Luo L, Uchida N, Dulac C (2018) Functional circuit architecture underlying parental behaviour. Nature 556(7701):326–331

    Article  PubMed  PubMed Central  Google Scholar 

  • Korf H-W, Usadel K-H (1997) Neuroendocrinology. Retrospect and perspectives. Springer, Berlin

    Google Scholar 

  • Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE, Garfield AS, Vong L, Pei H, Watabe-Uchida M, Uchida N, Liberles SD, Lowell BB (2014) An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507(7491):238–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebow MA, Chen A (2016) Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry 21(4):450–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Legradi G, Hannibal J, Lechan RM (1998) Pituitary adenylate cyclase-activating polypeptide-nerve terminals densely innervate corticotropin-releasing hormone-neurons in the hypothalamic paraventricular nucleus of the rat. Neurosci Lett 246(3):145–148

    Article  PubMed  Google Scholar 

  • Lehmann ML, Mustafa T, Eiden AM, Herkenham M, Eiden LE (2013) PACAP-deficient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress. Psychoneuroendocrinology 38:702–715

    Article  PubMed  Google Scholar 

  • Lelievre V, Seksenyan A, Nobuta H, Yong WH, Chhith S, Niewiadomski P, Cohen JR, Dong H, Flores A, Liau LM, Kornblum HI, Scott MP, Waschek JA (2008) Disruption of the PACAP gene promotes medulloblastoma in ptc1 mutant mice. Dev Biol 313(1):359–370

    Article  PubMed  Google Scholar 

  • Lezak KR, Roman CW, Braas KM, Schutz KC, Falls WA, Schulkin J, May V, Hammack SE (2014) Regulation of bed nucleus of the Stria terminalis PACAP expression by stress and corticosterone. J Mol Neurosci 54:477–484

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Kirouac GJ (2008) Projections from the paraventricular nucleus of the thalamus to the forebrain, with special emphasis on the extended amygdala. J Comp Neurol 506(2):263–287

    Article  PubMed  Google Scholar 

  • Lindberg PT, Mitchell JW, Burgoon PW, Beaule C, Weihe E, Schafer MK, Eiden LE, Jiang SZ, Gillette MU (2019) Pituitary adenylate cyclase-activating peptide (PACAP)-glutamate co-transmission drives circadian phase-advancing responses to intrinsically photosensitive retinal ganglion cell projections by suprachiasmatic nucleus. Front Neurosci 13:1281

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindholm D, Skoglosa Y, Takei N (1998) Developmental regulation of pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor 1 in rat brain: function of PACAP as a neurotrophic factor. Ann N Y Acad Sci 865:189–196

    Article  PubMed  Google Scholar 

  • Liu DM, Cuevas J, Adams DJ (2000) VIP and PACAP potentiation of nicotinic ACh-evoked currents in rat parasympathetic neurons is mediated by G-protein activation. Eur J Neurosci 12(7):2243–2251

    Article  PubMed  Google Scholar 

  • Lugo JM, Rodriguez A, Helguera Y, Morales R, Gonzalez O, Acosta J, Besada V, Sanchez A, Estrada MP (2008) Recombinant novel pituitary adenylate cyclase-activating polypeptide from African catfish (Clarias gariepinus) authenticates its biological function as a growth-promoting factor in low vertebrates. J Endocrinol 197(3):583–597

    Article  PubMed  Google Scholar 

  • Lutfy K, Shankar G (2019) Emerging evidence for the role of pituitary adenylate cyclase-activating peptide in neuropsychiatric disorders. Prog Mol Biol Transl Sci 167:143–157

    Article  PubMed  Google Scholar 

  • Macdonald DS, Weerapura M, Beazely MA, Martin L, Czerwinski W, Roder JC, Orser BA, MacDonald JF (2005) Modulation of NMDA receptors by pituitary adenylate cyclase activating peptide in CA1 neurons requires G alpha q, protein kinase C, and activation of Src. J Neurosci 25(49):11374–11384

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDonald JF, Jackson MF, Beazely MA (2007) G protein-coupled receptors control NMDARs and metaplasticity in the hippocampus. Biochim Biophys Acta 1768(4):941–951

    Article  PubMed  Google Scholar 

  • Maduna T, Lelievre V (2016) Neuropeptides shaping the central nervous system development: spatiotemporal actions of VIP and PACAP through complementary signaling pathways. J Neurosci Res 94(12):1472–1487

    Article  PubMed  Google Scholar 

  • May V, Braas KM (1995) Pituitary adenylate cyclase-activating polypeptide (PACAP) regulation of sympathetic neuron neuropeptide Y and catecholamine expression. J Neurochem 65(3):978–987

    Article  PubMed  Google Scholar 

  • McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP, Bruchas MR (2015) CRH engagement of the locus Coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87(3):605–620

    Article  PubMed  PubMed Central  Google Scholar 

  • Mercer KB, Dias B, Shafer D, Maddox SA, Mulle JG, Hu P, Walton J, Ressler KJ (2016) Functional evaluation of a PTSD-associated genetic variant: estradiol regulation and ADCYAP1R1. Transl Psychiatry 6(12):e978

    Article  PubMed  PubMed Central  Google Scholar 

  • Messlinger K, Balcziak LK, Russo AF (2020) Cross-talk signaling in the trigeminal ganglion: role of neuropeptides and other mediators. J Neural Transm (Vienna) 127(4):431–444

    Article  PubMed  Google Scholar 

  • Miles OW, Thrailkill EA, Linden AK, May V, Bouton ME, Hammack SE (2018) Pituitary adenylate cyclase-activating peptide in the bed nucleus of the Stria terminalis mediates stress-induced reinstatement of cocaine seeking in rats. Neuropsychopharmacology 43:978–986

    Article  PubMed  Google Scholar 

  • Miles OW, May V, Hammack SE (2019) Pituitary adenylate cyclase-activating peptide (PACAP) signaling and the dark side of addiction. J Mol Neurosci 68(3):453–464. https://doi.org/10.1007/s12031-018-1147-6

    Article  PubMed  Google Scholar 

  • Missig G, Roman CW, Vizzard MA, Braas KM, Hammack SE, May V (2014) Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology 86:38–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Missig G, Mei L, Vizzard MA, Braas KM, Waschek JA, Ressler KJ, Hammack SE, May V (2017) Parabrachial pituitary adenylate cyclase-activating polypeptide activation of amygdala endosomal extracellular signal-regulated kinase signaling regulates the emotional component of pain. Biol Psychiatry 81(8):671–682

    Article  PubMed  Google Scholar 

  • Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574

    Article  PubMed  Google Scholar 

  • Moga MM, Saper CB (1994) Neuropeptide-immunoreactive neurons projecting to the paraventricular hypothalamic nucleus in the rat. J Comp Neurol 346(1):137–150

    Article  PubMed  Google Scholar 

  • Moller M, Baeres FM (2003) PACAP-containing intrapineal nerve fibers originate predominantly in the trigeminal ganglion: a combined retrograde tracing- and immunohistochemical study of the rat. Brain Res 984(1–2):160–169

    Article  PubMed  Google Scholar 

  • Moller K, Zhang Y-Z, Hakanson R, Luts A, Sjölund B, Uddman R, Sundler F (1993) Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: Immunocytochemical and immunochemical evidence. Neuroscience 57:725–732

    Article  PubMed  Google Scholar 

  • Montero M, Yon L, Kikuyama S, Dufour S, Vaudry H (2000) Molecular evolution of the growth hormone-releasing hormone/pituitary adenylate cyclase-activating polypeptide gene family. Functional implication in the regulation of growth hormone secretion. J Mol Endocrinol 25(2):157–168

    Article  PubMed  Google Scholar 

  • Mustafa T, Eiden LE (2006) The SECRETIN SUPERfamily: PACAP, VIP and related peptides. In: Lim R (ed) Handbook of neurochemistry and molecular neurobiology: XIII. Neuroactive peptides and proteins. Springer, Heidelberg, pp 1–36

    Google Scholar 

  • Mustafa T, Jiang SZ, Eiden AM, Weihe E, Thistlethwaite I, Eiden LE (2015) Impact of PACAP and PAC1 receptor deficiency on the neurochemical and behavioral effects of acute and chronic restraint stress in male C57BL/6 mice. Stress 18(4):408–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen HS, Hannibal J, Fahrenkrug J (1998) Embryonic expression of pituitary adenylate cyclase-activating polypeptide in sensory and autonomic ganglia and in spinal cord of the rat. J Comp Neurol 394:403–415

    Article  PubMed  Google Scholar 

  • O’Mara S (2005) The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us. J Anat 207(3):271–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohnou T, Yokai M, Kurihara T, Hasegawa-Moriyama M, Shimizu T, Inoue K, Kambe Y, Kanmura Y, Miyata A (2016) Pituitary adenylate cyclase-activating polypeptide type 1 receptor signaling evokes long-lasting nociceptive behaviors through the activation of spinal astrocytes in mice. J Pharmacol Sci 130(4):194–203

    Article  PubMed  Google Scholar 

  • Onaga T, Uchida M, Kimura M, Miyazaki M, Mineo H, Kato S, Zabielski R (1996) Effect of pituitary adenylate cyclase-activating polypeptide on excocrine and endocrine secretion in the ovine pancreas. Comp Biochem Physiol 115C:185–193

    Google Scholar 

  • Otto C, Kovalchuk Y, Wolfer DP, Gass P, Martin M, Zuschratter W, Gröne HJ, Kellendonk C, Tronche F, Maldonado R, Lipp H-P, Konnerth A, Schütz G (2001) Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient mice. J Neurosci 21:5520–5527

    Article  PubMed  PubMed Central  Google Scholar 

  • Palkovits M, Somogyvari-Vigh A, Arimura A (1995) Concentrations of pituitary adenylate cyclase activating polypeptide (PACAP) in human brain nuclei. Brain Res 699(1):116–120

    Article  PubMed  Google Scholar 

  • Papathanou M, Bjorklund AK, Martis-Thiele MM, Wallen-Mackenzie A (2019) Single-nuclei transcriptomic analysis of the subthalamicnucleus reveals different Pitx2-positive subpopulations. Commun Biol. https://doi.org/10.1038/s42003-020-1028-8

  • Pinto IP, Minasi LB, da Cruz AS, de Melo AV, da Cruz ECDM, Pereira RR, Ribeiro CL, da Silva CC, de Melo ESD, da Cruz AD (2014) A non-syndromic intellectual disability associated with a de novo microdeletion at 7q and 18p, microduplication at Xp, and 18q partial trisomy detected using chromosomal microarray analysis approach. Mol Cytogenet 7:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Portbury AL, McConalogue K, Furness JB, Young HM (1995) Distribution of pituitary adenylyl cyclase activating peptide (PACAP) immunoreactivity in neurons of the Guinea-pig digestive tract and their projections in the ileum and colon. Cell Tissue Res 279(2):385–392

    Article  PubMed  Google Scholar 

  • Poulin JF, Zou J, Drouin-Ouellet J, Kim KY, Cicchetti F, Awatramani RB (2014) Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep 9(3):930–943

    Article  PubMed  PubMed Central  Google Scholar 

  • Przywara DA, Xi G, Angelilli L, Wakade TD, Wakade AR (1996) A noncholinergic transmitter, pituitary adenylate cyclase activating polypeptide, utilizes a novel mechanism to evoke catecholamine secretion in rat adrenal chromaffin cells. J Biol Chem 271:10545–10550

    Article  PubMed  Google Scholar 

  • Radley JJ, Sawchenko PE (2011) A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. J Neurosci 31(26):9683–9695

    Article  PubMed  PubMed Central  Google Scholar 

  • Radley JJ, Gosselink KL, Sawchenko PE (2009) A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response. J Neurosci 29(22):7330–7340

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajbhandari AK, Octeau JC, Gonzalez S, Pennington ZT, Trott J, Chavez J, N’gyuen E, Keces N, Hong WZ, Neve RL, Waschek J, Khakh BS, Fanselow MS (2021) A peptidergic amygdala microcircuit modulates sexually dimorphic contextual fear. J Neurosci 41(15):3446–3461

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasbach E, Splitthoff P, Bonaterra GA, Schwarz A, Mey L, Schwarzbach H, Eiden LE, Weihe E, Kinscherf R (2019) PACAP deficiency aggravates atherosclerosis in ApoE deficient mice. Immunobiology 224(1):124–132. https://doi.org/10.1016/j.imbio.2018.09.00

    Article  PubMed  Google Scholar 

  • Rawlings SR, Hezareh M (1996) Pituitary adenylate cyclase activating polypeptide (PACAP) and PACAP/vasoactive intestinal polypeptide receptors: action on the anterior pituitary gland. Endocr Rev 17:4–29

    PubMed  Google Scholar 

  • Reglodi D, Somogyvari-Vigh A, Vigh J, Li M, Lengvari I, Arimura A (2001) Pituitary adenylate cyclase activating polypeptide is highly abundant in the nervous system of anoxia-tolerant turtle, Pseudemys scripta elegans. Peptides 22(6):873–878

    Article  PubMed  Google Scholar 

  • Resch JM, Boisvert JP, Hourigan AE, Mueller CR, Yi SS, Choi S (2011) Stimulation of the hypothalamic ventromedial nuclei by pituitary adenylate cyclase-activating polypeptide induces hypophagia and thermogenesis. Am J Physiol Regul Integr Comp Physiol 301(6):R1625–R1634

    Article  PubMed  PubMed Central  Google Scholar 

  • Resch JM, Maunze B, Gerhardt AK, Magnuson SK, Phillips KA, Choi S (2013) Intrahypothalamic pituitary adenylate cyclase-activating polypeptide regulates energy balance via site-specific actions on feeding and metabolism. Am J Physiol Endocrinol Metab 305(12):E1452–E1463

    Article  PubMed  PubMed Central  Google Scholar 

  • Resch JM, Maunze B, Phillips KA, Choi S (2014) Inhibition of food intake by PACAP in the hypothalamic ventromedial nuclei is mediated by NMDA receptors. Physiol Behav 133:230–235

    Article  PubMed  PubMed Central  Google Scholar 

  • Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, Norrholm SD, Kilaru V, Smith AK, Myers AJ, Ramirez M, Engel A, Hammack SE, Toufexis D, Braas KM, Binder EB, May V (2011) Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470(7335):492–497

    Article  PubMed  PubMed Central  Google Scholar 

  • Ringer C, Buning LS, Schafer MK, Eiden LE, Weihe E, Schutz B (2013) PACAP signaling exerts opposing effects on neuroprotection and neuroinflammation during disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 54:32–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross RA, Leon S, Madara JC, Schafer D, Fergani C, Maguire CA, Verstegen AM, Brengle E, Kong D, Herbison AE, Kaiser UB, Lowell BB, Navarro VM (2018) PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse. elife 7:e35960

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross RA, Hoeppner SS, Hellberg SN, O’Day EB, Rosencrans PL, Ressler KJ, May V, Simon NM (2020) Circulating PACAP peptide and PAC1R genotype as possible transdiagnostic biomarkers for anxiety disorders in women: a preliminary study. Neuropsychopharmacology 45(7):1125–1133

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudecki AP, Gray SL (2016) PACAP in the defense of energy homeostasis. Trends Endocrinol Metab 27(9):620–632

    Article  PubMed  Google Scholar 

  • Seaborn T, Ravni A, Au R, Chow BK, Fournier A, Wurtz O, Vaudry H, Eiden LE, Vaudry D (2014) Induction of serpinb1a by PACAP or NGF is required for PC12 cells survival after serum withdrawal. J Neurochem 131(1):21–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Seiglie MP, Smith KL, Blasio A, Cottone P, Sabino V (2015) Pituitary adenylate cyclase-activating polypeptide induces a depressive-like phenotype in rats. Psychopharmacology 232:3821–3831

    Article  PubMed  PubMed Central  Google Scholar 

  • Seiglie MP, Huang L, Cottone P, Sabino V (2019) Role of the PACAP system of the extended amygdala in the acoustic startle response in rats. Neuropharmacology 160:107761

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherwood NM, Krueckl SL, McRory JE (2000) The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocrine Rev 21:619–670

    Google Scholar 

  • Sheward WJ, Lutz EM, Copp AJ, Harmar AJ (1998) Expression of PACAP, and PACAP type 1 (PAC1) receptor mRNA during development of the mouse embryo. Dev Brain Res 109:245–253

    Article  Google Scholar 

  • Skoglösa Y, Takei N, Lindholm D (1999) Distribution of pituitary adenylate cyclase activating polypeptide mRNA in the developing rat brain. Mol Brain Res 65:1–13

    Article  PubMed  Google Scholar 

  • Smith SJ, Sumbul U, Graybuck LT, Collman F, Seshamani S, Gala R, Gliko O, Elabbady L, Miller JA, Bakken TE, Rossier J, Yao Z, Lein E, Zeng H, Tasic B, Hawrylycz M (2019) Single-cell transcriptomic evidence for dense intracortical neuropeptide networks. elife 8:e47889

    Article  PubMed  PubMed Central  Google Scholar 

  • Splitthoff P, Rasbach E, Neudert P, Bonaterra GA, Schwarz A, Mey L, Schwarzbach H, Eiden LE, Weihe E, Kinscherf R (2020) PAC1 deficiency attenuates progression of atherosclerosis in ApoE deficient mice under cholesterol-enriched diet. Immunobiology 225(3):151930

    Article  PubMed  PubMed Central  Google Scholar 

  • Sternson SM (2013) Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron 77(5):810–824

    Article  PubMed  PubMed Central  Google Scholar 

  • Stroth N, Eiden LE (2010) Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on pituitary adenylate cyclase-activating polypeptide signaling. Neuroscience 165:1025–1030

    Article  PubMed  Google Scholar 

  • Stroth N, Holighaus Y, Ait-Ali D, Eiden LE (2011) PACAP: a master regulator of neuroendocrine stress circuits and the cellular stress response. Ann N Y Acad Sci 1220(1):49–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Stroth N, Kuri BA, Mustafa T, Chan SA, Smith CB, Eiden LE (2013) PACAP controls adrenomedullary catecholamine secretion and expression of catecholamine biosynthetic enzymes at high splanchnic nerve firing rates characteristic of stress transduction in male mice. Endocrinology 154(1):330–339

    Article  PubMed  Google Scholar 

  • Suh J, Lu N, Nicot A, Tatsuno I, DiCicco-Bloom E (2001) PACAP is an anti-mitogenic signal in developing cerebral cortex. Nat Neurosci 4(2):123–124

    Article  PubMed  Google Scholar 

  • Sundler F, Ekblad E, Hannibal J, Moller K, Zhang Y-Z, Mulder H, Elsas T, Grunditz T, Danielsen N, Fahrenkrug J, Uddman R (1996) Pituitary adenylate cyclase-activating peptide in sensory and autonomic ganglia: localization and regulation. Ann N Y Acad Sci 805:410–428

    Article  PubMed  Google Scholar 

  • Swanson LW, Bota M (2010) Foundational model of structural connectivity in the nervous system with a schema for wiring diagrams, connectome, and basic plan architecture. Proc Natl Acad Sci U S A 107(48):20610–20617

    Article  PubMed  PubMed Central  Google Scholar 

  • Takasaki I, Nakamura K, Shimodaira A, Watanabe A, Du Nguyen H, Okada T, Toyooka N, Miyata A, Kurihara T (2019a) The novel small-molecule antagonist of PAC1 receptor attenuates formalin-induced inflammatory pain behaviors in mice. J Pharmacol Sci 139(2):129–132

    Article  PubMed  Google Scholar 

  • Takasaki I, Ogashi H, Okada T, Shimodaira A, Hayakawa D, Watanabe A, Miyata A, Kurihara T, Gouda H, Toyooka N (2019b) Synthesis of a novel and potent small-molecule antagonist of PAC1 receptor for the treatment of neuropathic pain. Eur J Med Chem 186:111902

    Article  PubMed  Google Scholar 

  • Tamas A, Szabadfi K, Nemeth A, Fulop B, Kiss P, Atlasz T, Gabriel R, Hashimoto H, Baba A, Shintani N, Helyes Z, Reglodi D (2012) Comparative examination of inner ear in wild type and pituitary adenylate cyclase activating polypeptide (PACAP)-deficient mice. Neurotox Res 21(4):435–444

    Article  PubMed  Google Scholar 

  • Tan CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, Knight ZA (2016) Warm-sensitive neurons that control body temperature. Cell 167(1):47–59. e15

    Article  PubMed  PubMed Central  Google Scholar 

  • Tompkins JD, Ardell JL, Hoover DB, Parsons RL (2007) Neurally released pituitary adenylate cyclase-activating polypeptide enhances Guinea pig intrinsic cardiac neurone excitability. J Physiol 582(Pt 1):87–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsukiyama N, Saida Y, Kakuda M, Shintani N, Hayata A, Morita Y, Tanida M, Tajiri M, Hazama K, Ogata K, Hashimoto H, Baba A (2011) PACAP centrally mediates emotional stress-induced corticosterone responses in mice. Stress 14:368–375

    Article  PubMed  PubMed Central  Google Scholar 

  • Valentino RJ, Van Bockstaele E (2008) Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol 583(2–3):194–203

    Article  PubMed  PubMed Central  Google Scholar 

  • Varodayan FP, Minnig MA, Steinman MQ, Oleata CS, Riley MW, Sabino V, Roberto M (2020) PACAP regulation of central amygdala GABAergic synapses is altered by restraint stress. Neuropharmacology 168:107752

    Article  PubMed  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M, Fournier A, Vaudry H (1999) Neurotrophic activity of pituitary adenylate cyclase-activating polypeptide on rat cerebellar cortex during development. Proc Natl Acad Sci U S A 96:9415–9420

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaudry D, Hamelink C, Damadzic R, Eskay RL, Gonzalez B, Eiden LE (2005) Endogenous PACAP acts as a stress response peptide to protect cerebellar neurons from ethanol or oxidative insult. Peptides 26(12):2518–2524

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaz RP, Cardoso A, Sa SI, Pereira PA, Madeira MD (2017) The integrity of the nucleus of the lateral olfactory tract is essential for the normal functioning of the olfactory system. Brain Struct Funct 222(8):3615–3637

    Article  PubMed  PubMed Central  Google Scholar 

  • Verhage M, Maia AS, Plomp JJ, Brussard AB, Heeroma JH, Vermeer H, Toonen RF, Hammer RE, van den Berg TK, Missler M, Geuze HJ, Südhof TC (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864–869

    Article  PubMed  Google Scholar 

  • Vigh S, Arimura A, Koves K, Somogyvari-Vigh A, Sitton J, Fermin CD (1991) Immunohistochemical localization of the neuropeptide, pituitary adenylate cyclase activating polypeptide (PACAP), in human and primate hypothalamus. Peptides 12(2):313–318

    Article  PubMed  Google Scholar 

  • Wakade AR (1988) Non-cholinergic transmitter(s) maintains secretion of catecholamines from rat adrenal medulla for several hours of continuous stimulation of splanchnic neurons. J Neurochem 50:1302–1308

    Article  PubMed  Google Scholar 

  • Wallace ML, Huang KW, Hochbaum D, Hyun M, Radeljic G, Sabatini BL (2020) Anatomical and single-cell transcriptional profiling of the murine habenular complex. elife 9:e51271

    Article  PubMed  PubMed Central  Google Scholar 

  • Waschek JA (2013) VIP and PACAP: neuropeptide modulators of CNS inflammation, injury, and repair. Br J Pharmacol 169(3):512–523

    Article  PubMed  PubMed Central  Google Scholar 

  • Waschek JA, Cassillas RA, Nguyen TB, DiCicco-Bloom EM, Carpenter EM, Rodriguez WI (1998) Neural tube expression of pituitary adenylate cyclase-activating peptide (PACAP) and receptor: potential role in patterning and neurogenesis. Proc Natl Acad Sci U S A 95:9602–9607

    Article  PubMed  PubMed Central  Google Scholar 

  • Waschek JA, Baca SM, Akerman S (2018) PACAP and migraine headache: immunomodulation of neural circuits in autonomic ganglia and brain parenchyma. J Headache Pain 19(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Masuo Y, Matsumoto H, Suzuki N, Ohtaki T, Masuda Y, Kitada C, Tsuda M, Fujino M (1992) Pituitary adenylate cyclase activating polypeptide provokes cultured rat chromaffin cells to secrete adrenaline. Biochem Biophys Res Commun 182:403–411

    Article  PubMed  Google Scholar 

  • Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG (2014) Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509(7500):325–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu S, Yang H, Menon V, Lemire AL, Wang L, Henry FE, Turaga SC, Sternson SM (2020) Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles. Science 370(6514):eabb2494

    Article  PubMed  Google Scholar 

  • Yamaguchi T, Danjo T, Pastan I, Hikida T, Nakanishi S (2013) Distinct roles of segregated transmission of the septo-habenular pathway in anxiety and fear. Neuron 78(3):537–544

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Eiden LE (2019) Two ancient neuropeptides, PACAP and AVP, modulate motivated behavior at synapses in the extrahypothalamic brain: a study in contrast. Cell Tissue Res 375(1):103–122

    Article  PubMed  Google Scholar 

  • Zhang Y, Danielsen N, Sundler F, Mulder H (1998) Pituitary adenylate cyclase-activating peptide is upregulated in sensory neurons by inflammation. Neuroreport 9:2833–2836

    Article  PubMed  Google Scholar 

  • Zhang K, Lindsberg PJ, Tatlisumak T, Kaste M, Olsen HS, Andersson LC (2000) Stanniocalcin: a molecular guard of neurons during cerebral ischemia. Proc Natl Acad Sci U S A 97(7):3637–3642

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Hernandez VS, Gerfen CR, Jiang SZ, Zavala L, Barrio RA, Eiden LE (2021) Behavioral role of PACAP reflects its selective distribution in glutamatergic and GABAergic neuronal subpopulations. elife 10:e61718

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou CJ, Shioda S, Shibanuma M, Nakajo S, Funahashi H, Nakai Y, Arimura A, Kikuyama S (1999) Pituitary adenylate cyclase-activating polypeptide receptors during development: expression in the rat embryo at primitive streak stage. Neuroscience 93:375–391

    Article  PubMed  Google Scholar 

  • Zimmerman CA, Leib DE, Knight ZA (2017) Neural circuits underlying thirst and fluid homeostasis. Nat Rev Neurosci 18(8):459–469

    Article  PubMed  PubMed Central  Google Scholar 

  • Zitnik GA (2016) Control of arousal through neuropeptide afferents of the locus coeruleus. Brain Res 1641(Pt B):338–350

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lee E. Eiden or Limei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eiden, L.E., Hernández, V., Jiang, S.Z., Zhang, L. (2021). Functional Chemoanatomy of PACAP in Neuroendocrine and Neuronal Circuits. In: Grinevich, V., Dobolyi, Á. (eds) Neuroanatomy of Neuroendocrine Systems. Masterclass in Neuroendocrinology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-86630-3_15

Download citation

Publish with us

Policies and ethics