Skip to main content

Neuroanatomy of Tuberoinfundibular Peptide 39 Related to Neuroendocrine and Behavioral Regulations

  • Chapter
  • First Online:
Neuroanatomy of Neuroendocrine Systems

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 12))

  • 926 Accesses

Abstract

Tuberoinfundibular peptide of 39 residues (TIP39), also referred to as parathyroid hormone 2 (PTH2), is the endogenous ligand for the parathyroid hormone 2 receptor. TIP39 is synthesized by neurons in three small and distinct brain regions. These neurons project to discrete regions distributed throughout the brain, with highest abundance in the hypothalamus, lateral septum, medial prefrontal cortex, amygdala, periaqueductal gray, nucleus of the solitary tract, locus coeruleus, and spinal cord dorsal horn. Neurons that express the PTH2 receptor are present in each of the regions to which TIP39 neurons project. Experiments have been carried out to evaluate the potential contribution of TIP39-PTH2 receptor signaling to functions thought to be influenced by circuits in regions with high TIP39/PTH2 receptor density. Current evidence supports a role for this peptide/receptor system in multiple homeostatic responses or adaptations, including to nociceptive stimuli, changes in environmental temperature, threat, maternal function, and social awareness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews ZB (2005) Neuroendocrine regulation of prolactin secretion during late pregnancy: easing the transition into lactation. J Neuroendocrinol 17:466–473

    Article  CAS  PubMed  Google Scholar 

  • Anneser L, Alcantara IC, Gemmer A, Mirkes K, Ryu S, Schuman EM (2020) The neuropeptide Pth2 dynamically senses others via mechanosensation. Nature 588:653–657

    Article  CAS  PubMed  Google Scholar 

  • Arbogast LA, Voogt JL (1998) Endogenous opioid peptides contribute to suckling-induced prolactin release by suppressing tyrosine hydroxylase activity and messenger ribonucleic acid levels in tuberoinfundibular dopaminergic neurons. Endocrinology 139:2857–2862

    Article  CAS  PubMed  Google Scholar 

  • Bagó AG, Dimitrov E, Saunders R, Seress L, Palkovits M, Usdin TB, Dobolyi A (2009) Parathyroid hormone 2 receptor and its endogenous ligand tuberoinfundibular peptide of 39 residues are concentrated in endocrine, viscerosensory and auditory brain regions in macaque and human. Neuroscience 162:128–147

    Article  PubMed  Google Scholar 

  • Bodnar I, Mravec B, Kubovcakova L, Toth EB, Fulop F, Fekete MI, Kvetnansky R, Nagy GM (2004) Stress- as well as suckling-induced prolactin release is blocked by a structural analogue of the putative hypophysiotrophic prolactin-releasing factor, salsolinol. J Neuroendocrinol 16:208–213

    Article  CAS  PubMed  Google Scholar 

  • Brenner D, Bago AG, Gallatz K, Palkovits M, Usdin TB, Dobolyi A (2008) Tuberoinfundibular peptide of 39 residues in the embryonic and early postnatal rat brain. J Chem Neuroanat 36:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges RS (2020) The behavioral neuroendocrinology of maternal behavior: past accomplishments and future directions. Horm Behav 120:104662

    Article  PubMed  PubMed Central  Google Scholar 

  • Callahan P, Klosterman S, Prunty D, Tompkins J, Janik J (2000) Immunoneutralization of endogenous opioid peptides prevents the suckling-induced prolactin increase and the inhibition of tuberoinfundibular dopaminergic neurons. Neuroendocrinology 71:268–276

    Article  CAS  PubMed  Google Scholar 

  • Campeau S, Watson SJ Jr (2000) Connections of some auditory-responsive posterior thalamic nuclei putatively involved in activation of the hypothalamo-pituitary-adrenocortical axis in response to audiogenic stress in rats: an anterograde and retrograde tract tracing study combined with Fos expression. J Comp Neurol 423:474–491

    Article  CAS  PubMed  Google Scholar 

  • Carter CS, Altemus M, Chrousos GP (2001) Neuroendocrine and emotional changes in the post-partum period. Prog Brain Res 133:241–249

    Article  CAS  PubMed  Google Scholar 

  • Coutellier L, Usdin TB (2011) Enhanced long-term fear memory and increased anxiety and depression-like behavior after exposure to an aversive event in mice lacking TIP39 signaling. Behav Brain Res 222:265–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Coutellier L, Logemann A, Rusnak M, Usdin TB (2011) Maternal absence of the parathyroid hormone 2 receptor affects postnatal pup development. J Neuroendocrinol 23:612–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cservenak M, Bodnar I, Usdin TB, Palkovits M, Nagy GM, Dobolyi A (2010) Tuberoinfundibular peptide of 39 residues is activated during lactation and participates in the suckling-induced prolactin release in rat. Endocrinology 151:5830–5840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cservenak M, Szabo ER, Bodnar I, Leko A, Palkovits M, Nagy GM, Usdin TB, Dobolyi A (2013) Thalamic neuropeptide mediating the effects of nursing on lactation and maternal motivation. Psychoneuroendocrinology 38:3070–3084

    Article  CAS  PubMed  Google Scholar 

  • Cservenak M, Keller D, Kis V, Fazekas EA, Ollos H, Leko AH, Szabo ER, Renner E, Usdin TB, Palkovits M et al (2017a) A thalamo-hypothalamic pathway that activates oxytocin neurons in social contexts in female rats. Endocrinology 158:335–348

    Article  CAS  PubMed  Google Scholar 

  • Cservenak M, Kis V, Keller D, Dimen D, Menyhart L, Olah S, Szabo ER, Barna J, Renner E, Usdin TB et al (2017b) Maternally involved galanin neurons in the preoptic area of the rat. Brain Struct Funct 222:781–798

    Article  CAS  PubMed  Google Scholar 

  • Della Penna K, Kinose F, Sun H, Koblan KS, Wang H (2003) Tuberoinfundibular peptide of 39 residues (TIP39): molecular structure and activity for parathyroid hormone 2 receptor. Neuropharmacology 44:141–153

    Article  CAS  PubMed  Google Scholar 

  • Dimitrov E, Usdin TB (2010) Tuberoinfundibular peptide of 39 residues modulates the mouse hypothalamic-pituitary-adrenal axis via paraventricular glutamatergic neurons. J Comp Neurol 518:4375–4394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrov EL, Petrus E, Usdin TB (2010) Tuberoinfundibular peptide of 39 residues (TIP39) signaling modulates acute and tonic nociception. Exp Neurol 226:68–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrov EL, Kim YY, Usdin TB (2011) Regulation of hypothalamic signaling by tuberoinfundibular peptide of 39 residues is critical for the response to cold: a novel peptidergic mechanism of thermoregulation. J Neurosci 31:18166–18179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobolyi A, Ueda H, Uchida H, Palkovits M, Usdin TB (2002) Anatomical and physiological evidence for involvement of tuberoinfundibular peptide of 39 residues in nociception. Proc Natl Acad Sci U S A 99:1651–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobolyi A, Palkovits M, Bodnar I, Usdin TB (2003a) Neurons containing tuberoinfundibular peptide of 39 residues project to limbic, endocrine, auditory and spinal areas in rat. Neuroscience 122:1093–1105

    Article  CAS  PubMed  Google Scholar 

  • Dobolyi A, Palkovits M, Usdin TB (2003b) Expression and distribution of tuberoinfundibular peptide of 39 residues in the rat central nervous system. J Comp Neurol 455:547–566

    Article  CAS  PubMed  Google Scholar 

  • Dobolyi A, Irwin S, Makara G, Usdin TB, Palkovits M (2005) Calcitonin gene-related peptide-containing pathways in the rat forebrain. J Comp Neurol 489:92–119

    Article  CAS  PubMed  Google Scholar 

  • Dobolyi A, Irwin S, Wang J, Usdin TB (2006a) The distribution and neurochemistry of the parathyroid hormone 2 receptor in the rat hypothalamus. Neurochem Res 31:227–236

    Article  CAS  PubMed  Google Scholar 

  • Dobolyi A, Wang J, Irwin S, Usdin TB (2006b) Postnatal development and gender-dependent expression of TIP39 in the rat brain. J Comp Neurol 498:375–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobolyi A, Palkovits M, Usdin TB (2010) The TIP39-PTH2 receptor system: unique peptidergic cell groups in the brainstem and their interactions with central regulatory mechanisms. Prog Neurobiol 90:29–59

    Article  CAS  PubMed  Google Scholar 

  • Dobolyi A, Dimitrov E, Palkovits M, Usdin TB (2012) The neuroendocrine functions of the parathyroid hormone 2 receptor. Front Endocrinol (Lausanne) 3:121

    Article  CAS  PubMed  Google Scholar 

  • Dobolyi A, Cservenak M, Young LJ (2018) Thalamic integration of social stimuli regulating parental behavior and the oxytocin system. Front Neuroendocrinol 51:102–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobolyi A, Olah S, Keller D, Kumari R, Fazekas EA, Csikos V, Renner E, Cservenak M (2020) Secretion and function of pituitary prolactin in evolutionary perspective. Front Neurosci 14:621

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubois-Dauphin M, Armstrong WE, Tribollet E, Dreifuss JJ (1985) Somatosensory systems and the milk-ejection reflex in the rat. II. The effects of lesions in the ventroposterior thalamic complex, dorsal columns and lateral cervical nucleus-dorsolateral funiculus. Neuroscience 15:1131–1140

    Article  CAS  PubMed  Google Scholar 

  • Faber CA, Dobolyi A, Sleeman M, Usdin TB (2007) Distribution of tuberoinfundibular peptide of 39 residues and its receptor, parathyroid hormone 2 receptor, in the mouse brain. J Comp Neurol 502:563–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Febo M, Numan M, Ferris CF (2005) Functional magnetic resonance imaging shows oxytocin activates brain regions associated with mother-pup bonding during suckling. J Neurosci 25:11637–11644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Febo M, Stolberg TL, Numan M, Bridges RS, Kulkarni P, Ferris CF (2008) Nursing stimulation is more than tactile sensation: it is a multisensory experience. Horm Behav 54:330–339

    Article  PubMed  PubMed Central  Google Scholar 

  • Fegley DB, Holmes A, Riordan T, Faber CA, Weiss JR, Ma S, Batkai S, Pacher P, Dobolyi A, Murphy A et al (2008) Increased fear- and stress-related anxiety-like behavior in mice lacking tuberoinfundibular peptide of 39 residues. Genes Brain Behav 7:933–942

    Article  CAS  PubMed  Google Scholar 

  • Ferris CF, Kulkarni P, Sullivan JM Jr, Harder JA, Messenger TL, Febo M (2005) Pup suckling is more rewarding than cocaine: evidence from functional magnetic resonance imaging and three-dimensional computational analysis. J Neurosci 25:149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzsimmons MD, Olschowka JA, Wiegand SJ, Hoffman GE (1992) Interaction of opioid peptide-containing terminals with dopaminergic perikarya in the rat hypothalamus. Brain Res 581:10–18

    Article  CAS  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631

    Article  CAS  PubMed  Google Scholar 

  • Gellen B, Zelena D, Usdin TB, Dobolyi A (2017) The parathyroid hormone 2 receptor participates in physiological and behavioral alterations of mother mice. Physiol Behav 181:51–58

    Article  CAS  PubMed  Google Scholar 

  • Gensure R, Juppner H (2005) Parathyroid hormone without parathyroid glands. Endocrinology 146:544–546

    Article  CAS  PubMed  Google Scholar 

  • Gensure RC, Ponugoti B, Gunes Y, Papasani MR, Lanske B, Bastepe M, Rubin DA, Juppner H (2004) Identification and characterization of two parathyroid hormone-like molecules in zebrafish. Endocrinology 145:1634–1639

    Article  CAS  PubMed  Google Scholar 

  • Gillespie MT, Martin TJ (1994) The parathyroid hormone-related protein gene and its expression. Mol Cell Endocrinol 100:143–147

    Article  CAS  PubMed  Google Scholar 

  • Goold CP, Usdin TB, Hoare SR (2001) Regions in rat and human parathyroid hormone (PTH) 2 receptors controlling receptor interaction with PTH and with antagonist ligands. J Pharmacol Exp Ther 299:678–690

    CAS  PubMed  Google Scholar 

  • Hansen S, Kohler C (1984) The importance of the peripeduncular nucleus in the neuroendocrine control of sexual behavior and milk ejection in the rat. Neuroendocrinology 39:563–572

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Saito TR, Furudate S, Takahashi KW (2001) Prolactin levels and maternal behavior induced by ultrasonic vocalizations of the rat pup. Exp Anim 50:307–312

    Article  CAS  PubMed  Google Scholar 

  • Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev 28:370–490

    Article  CAS  PubMed  Google Scholar 

  • Herkenham M (1987) Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 23:1–38

    Article  CAS  PubMed  Google Scholar 

  • Hofer MA (1996) Multiple regulators of ultrasonic vocalization in the infant rat. Psychoneuroendocrinology 21:203–217

    Article  CAS  PubMed  Google Scholar 

  • Kinsley CH, Amory-Meyer E (2011) Why the maternal brain? J Neuroendocrinol 23:974–983

    Article  CAS  PubMed  Google Scholar 

  • Kuo J, Usdin TB (2007) Development of a rat parathyroid hormone 2 receptor antagonist. Peptides 28:887–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaBuda CJ, Dobolyi A, Usdin TB (2004) Tuberoinfundibular peptide of 39 residues produces anxiolytic and antidepressant actions. Neuroreport 15:881–885

    Article  CAS  PubMed  Google Scholar 

  • Lamming GE (ed) (1994) Marshall’s physiology of reproduction. Chapman & Hall, London

    Google Scholar 

  • LeDoux JE, Farb C, Ruggiero DA (1990) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci 10:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Chen P, Smith MS (1999a) Identification of neuronal input to the arcuate nucleus (ARH) activated during lactation: implications in the activation of neuropeptide Y neurons. Brain Res 824:267–276

    Article  CAS  PubMed  Google Scholar 

  • Li C, Chen P, Smith MS (1999b) Neural populations in the rat forebrain and brainstem activated by the suckling stimulus as demonstrated by cFos expression. Neuroscience 94:117–129

    Article  CAS  PubMed  Google Scholar 

  • Lin SH, Miyata S, Matsunaga W, Kawarabayashi T, Nakashima T, Kiyohara T (1998) Metabolic mapping of the brain in pregnant, parturient and lactating rats using fos immunohistochemistry. Brain Res 787:226–236

    Article  CAS  PubMed  Google Scholar 

  • Lonstein JS, Simmons DA, Swann JM, Stern JM (1998) Forebrain expression of c-fos due to active maternal behaviour in lactating rats. Neuroscience 82:267–281

    Article  CAS  PubMed  Google Scholar 

  • Mallikarjun PK, Oyebode F (2005) Prevention of postnatal depression. J R Soc Health 125:221–226

    Article  Google Scholar 

  • Martin TJ, Moseley JM, Williams ED (1997) Parathyroid hormone-related protein: hormone and cytokine. J Endocrinol 154(Suppl):S23–S37

    CAS  PubMed  Google Scholar 

  • Morgan HD, Watchus JA, Fleming AS (1997) The effects of electrical stimulation of the medial preoptic area and the medial amygdala on maternal responsiveness in female rats. Ann N Y Acad Sci 807:602–605

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID (2003) Brain mechanisms underlying emotional alterations in the peripartum period in rats. Depress Anxiety 17:111–121

    Article  PubMed  Google Scholar 

  • Neumann ID (2008) Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol 20:858–865

    Article  CAS  PubMed  Google Scholar 

  • Numan M (2020) The parental brain. Oxford University Press, New York

    Book  Google Scholar 

  • Numan M, Numan MJ, Schwarz JM, Neuner CM, Flood TF, Smith CD (2005) Medial preoptic area interactions with the nucleus accumbens-ventral pallidum circuit and maternal behavior in rats. Behav Brain Res 158:53–68

    Article  PubMed  Google Scholar 

  • Olah S, Cservenak M, Keller D, Fazekas EA, Renner E, Low P, Dobolyi A (2018) Prolactin-induced and neuronal activation in the brain of mother mice. Brain Struct Funct 223:3229–3250

    Article  CAS  PubMed  Google Scholar 

  • Palkovits M, Dobolyi A, Helfferich F, Usdin TB (2004) Localization and chemical characterization of the audiogenic stress pathway. Ann N Y Acad Sci 1018:16–24

    Article  CAS  PubMed  Google Scholar 

  • Palkovits M, Helfferich F, Dobolyi A, Usdin TB (2009) Acoustic stress activates tuberoinfundibular peptide of 39 residues neurons in the rat brain. Brain Struct Funct 214:15–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palkovits M, Usdin TB, Makara GB, Dobolyi A (2010) Tuberoinfundibular peptide of 39 residues- immunoreactive fibers in the zona incerta and the supraoptic decussations terminate in the neuroendocrine hypothalamus. Neurochem Res 35:2078–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Törk I, Tecott LH, Valentino KL (1991) Atlas of the developing rat brain. Academic Press, San Diego

    Google Scholar 

  • Phillipps HR, Yip SH, Grattan DR (2020) Patterns of prolactin secretion. Mol Cell Endocrinol 502:110679

    Article  CAS  PubMed  Google Scholar 

  • Piserchio A, Usdin T, Mierke DF (2000) Structure of tuberoinfundibular peptide of 39 residues. J Biol Chem 275:27284–27290

    Article  CAS  PubMed  Google Scholar 

  • Rizzoli R, Ferrari SL, Pizurki L, Caverzasio J, Bonjour JP (1992) Actions of parathyroid hormone and parathyroid hormone-related protein. J Endocrinol Investig 15:51–56

    CAS  Google Scholar 

  • Roger M, Arnault P (1989) Anatomical study of the connections of the primary auditory area in the rat. J Comp Neurol 287:339–356

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt JS (1967) Nonhormonal basis of maternal behavior in the rat. Science 156:1512–1514

    Article  CAS  PubMed  Google Scholar 

  • Seip KM, Morrell JI (2009) Transient inactivation of the ventral tegmental area selectively disrupts the expression of conditioned place preference for pup- but not cocaine-paired contexts. Behav Neurosci 123:1325–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selmanoff M, Gregerson KA (1986) Suckling-induced prolactin release is suppressed by naloxone and simulated by beta-endorphin. Neuroendocrinology 42:255–259

    Article  CAS  PubMed  Google Scholar 

  • Siegel HI (1986) Hormonal basis of maternal behavior in the rat. Ann N Y Acad Sci 474:202–215

    Article  CAS  PubMed  Google Scholar 

  • Simerly RB, Swanson LW (1986) The organization of neural inputs to the medial preoptic nucleus of the rat. J Comp Neurol 246:312–342

    Article  CAS  PubMed  Google Scholar 

  • Stack EC, Numan M (2000) The temporal course of expression of c-Fos and Fos B within the medial preoptic area and other brain regions of postpartum female rats during prolonged mother--young interactions. Behav Neurosci 114:609–622

    Article  CAS  PubMed  Google Scholar 

  • Stern JM, Lonstein JS (2001) Neural mediation of nursing and related maternal behaviors. Prog Brain Res 133:263–278

    Article  CAS  PubMed  Google Scholar 

  • Sugimura Y, Murase T, Ishizaki S, Tachikawa K, Arima H, Miura Y, Usdin TB, Oiso Y (2003) Centrally administered tuberoinfundibular peptide of 39 residues inhibits arginine vasopressin release in conscious rats. Endocrinology 144:2791–2796

    Article  CAS  PubMed  Google Scholar 

  • Szabo FK, Snyder N, Usdin TB, Hoffman GE (2010) A direct neuronal connection between the subparafascicular and ventrolateral arcuate nuclei in non-lactating female rats. Could this pathway play a role in the suckling-induced prolactin release? Endocrine 37:62–70

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Benusiglio D, Lefevre A, Hilfiger L, Althammer F, Bludau A, Hagiwara D, Baudon A, Darbon P, Schimmer J et al (2020) Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nat Neurosci 23:1125–1137

    Article  CAS  PubMed  Google Scholar 

  • Terkel J, Damassa DA, Sawyer CH (1979) Ultrasonic cries from infant rats stimulate prolactin release in lactating mothers. Horm Behav 12:95–102

    Article  CAS  PubMed  Google Scholar 

  • Tindal JS, Knaggs GS (1977) Pathways in the forebrain of the rat concerned with the release of prolactin. Brain Res 119:211–221

    Article  CAS  PubMed  Google Scholar 

  • Tsuda MC, Yeung HM, Kuo J, Usdin TB (2015) Incubation of fear is regulated by TIP39 peptide signaling in the medial nucleus of the amygdala. J Neurosci 35:12152–12161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usdin TB (1997) Evidence for a parathyroid hormone-2 receptor selective ligand in the hypothalamus. Endocrinology 138:831–834

    Article  CAS  PubMed  Google Scholar 

  • Usdin TB, Gruber C, Bonner TI (1995) Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J Biol Chem 270:15455–15458

    Article  CAS  PubMed  Google Scholar 

  • Usdin TB, Bonner TI, Harta G, Mezey E (1996) Distribution of parathyroid hormone-2 receptor messenger ribonucleic acid in rat. Endocrinology 137:4285–4297

    Article  CAS  PubMed  Google Scholar 

  • Usdin TB, Hoare SR, Wang T, Mezey E, Kowalak JA (1999) TIP39: a new neuropeptide and PTH2-receptor agonist from hypothalamus. Nat Neurosci 2:941–943

    Article  CAS  PubMed  Google Scholar 

  • Usdin TB, Dobolyi A, Ueda H, Palkovits M (2003) Emerging functions for tuberoinfundibular peptide of 39 residues. Trends Endocrinol Metab 14:14–19

    Article  CAS  PubMed  Google Scholar 

  • Varga T, Palkovits M, Usdin TB, Dobolyi A (2008) The medial paralemniscal nucleus and its afferent neuronal connections in rat. J Comp Neurol 511:221–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakerley JB, O’Neill DS, ter Haar MB (1978) Relationship between the suckling-induced release of oxytocin and prolactin in the urethane-anaesthetized lactating rat. J Endocrinol 76:493–500

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Palkovits M, Rusnak M, Mezey E, Usdin TB (2000) Distribution of parathyroid hormone-2 receptor-like immunoreactivity and messenger RNA in the rat nervous system. Neuroscience 100:629–649

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Palkovits M, Usdin TB, Dobolyi A (2006) Forebrain projections of tuberoinfundibular peptide of 39 residues (TIP39)-containing subparafascicular neurons. Neuroscience 138:1245–1263

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG (2014) Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509:325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements and Funding

The work was supported by the Hungarian National Research, Development and Innovation Office OTKA K134221, NKFIH-4300-1/2017-NKP_17 research grants, Eötvös Loránd University Thematic Excellence Programme 2020 (TKP2020-IKA-05) supported by the National Research, Development and Innovation Office. Research in the laboratory of Dr. Usdin was supported by the Intramural Research Program of the National Institute of Mental Health (ZIC MH002963-04).

Key References

  • Anneser, L., Alcantara, I.C., Gemmer, A., Mirkes, K., Ryu, S. and Schuman, E.M. (2020). The neuropeptide Pth2 dynamically senses others via mechanosensation. Nature 588, 653–657. A breakthrough article about the social function of tuberoinfundibular peptide 39 in zebra fish.

  • Bridges, R.S. (2020). The behavioral neuroendocrinology of maternal behavior: Past accomplishments and future directions. Horm Behav 120, 104662. A recent review article about the current state of knowledge related to maternal behavior.

  • Cservenak, M., Keller, D., Kis, V., Fazekas, E.A., Ollos, H., Leko, A.H., Szabo, E.R., Renner, E., Usdin, T.B., Palkovits, M., Dobolyi A. (2017). A thalamo-hypothalamic pathway that activates oxytocin neurons in social contexts in female rats. Endocrinology 158, 335–348. The potential involvement of TIP39 in the control of paraventricular oxytocin neurons is presented.

  • Cservenak, M., Szabo, E.R., Bodnar, I., Leko, A., Palkovits, M., Nagy, G.M., Usdin, T.B. and Dobolyi, A. (2013). Thalamic neuropeptide mediating the effects of nursing on lactation and maternal motivation. Psychoneuroendocrinology 38, 3070–3084. The article presents evidence on the role of TIP39 in prolactin release and also in the control of maternal behaviors.

  • Dimitrov, E.L., Kim, Y.Y. and Usdin, T.B. (2011). Regulation of hypothalamic signaling by tuberoinfundibular peptide of 39 residues is critical for the response to cold: a novel peptidergic mechanism of thermoregulation. J Neurosci 31, 18166–18179. Description of the thermoregulatory function of TIP39.

  • Dimitrov, E.L., Kuo, J., Kohno, K. and Usdin, T.B. (2013). Neuropathic and inflammatory pain are modulated by tuberoinfundibular peptide of 39 residues. Proc Natl Acad Sci U S A 110, 13156–13161. The nociceptive function of TIP39 at the supraspinal level is described.

  • Dobolyi, A., Cservenak, M. and Young, L.J. (2018). Thalamic integration of social stimuli regulating parental behavior and the oxytocin system. Front Neuroendocrinol 51, 102–115. A review article about the involvement of the neuronal pathway containing TIP39 in social interactions.

  • Dobolyi, A., Ueda, H., Uchida, H., Palkovits, M. and Usdin, T.B. (2002). Anatomical and physiological evidence for involvement of tuberoinfundibular peptide of 39 residues in nociception. Proc Natl Acad Sci U S A 99, 1651–1656. This paper reports the cloning of TIP39 and also its role in nociceptive information transfer at the level of the spinal cord.

  • Numan, M. (2020). The Parental Brain. Oxford University Press. The book includes current knowledge about maternal and paternal behavioral changes as well as endocrine alterations.

  • Phillipps, H.R., Yip, S.H. and Grattan, D.R. (2020). Patterns of prolactin secretion. Mol Cell Endocrinol 502, 110,679. The control of prolactin secretion is presented in this recent review, which also includes the role of TIP39 in the central regulation of prolactin release.

  • Tsuda, M.C., Yeung, H.M., Kuo, J. and Usdin, T.B. (2015). Incubation of Fear Is Regulated by TIP39 Peptide Signaling in the Medial Nucleus of the Amygdala. J Neurosci 35, 12152–12161. In his paper how TIP39 affects fear processing is presented.

  • Usdin, T.B., Gruber, C. and Bonner, T.I. (1995). Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J Biol Chem 270, 15455–15458. This is the original paper, in which the cloning of parathyroid hormone 2 receptor was reported.

  • Usdin, T.B., Hoare, S.R., Wang, T., Mezey, E. and Kowalak, J.A. (1999). TIP39: a new neuropeptide and PTH2-receptor agonist from hypothalamus. Nat Neurosci 2, 941–943. The identification of TIP39 purified from bovine hypothalamus was reported in this seminal paper in the field.

  • Varga, T., Palkovits, M., Usdin, T.B. and Dobolyi, A. (2008). The medial paralemniscal nucleus and its afferent neuronal connections in rat. J Comp Neurol 511, 221–237. One of the three regions where TIP39 is expressed is the medial paralemniscal nucleus. The available knowledge about these TIP39-expressing neurons is limited, however, their connections with the brain auditory systems havecontrast to the profoundly different localization of been determined in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Árpád Dobolyi or Ted B. Usdin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dobolyi, Á., Usdin, T.B. (2021). Neuroanatomy of Tuberoinfundibular Peptide 39 Related to Neuroendocrine and Behavioral Regulations. In: Grinevich, V., Dobolyi, Á. (eds) Neuroanatomy of Neuroendocrine Systems. Masterclass in Neuroendocrinology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-86630-3_14

Download citation

Publish with us

Policies and ethics