Skip to main content

Asymptotic Statistical Analysis of Sparse Group LASSO via Approximate Message Passing

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12977))

  • 1782 Accesses

Abstract

Sparse Group LASSO (SGL) is a regularized model for high-dimensional linear regression problems with grouped covariates. SGL applies \(l_1\) and \(l_2\) penalties on the individual predictors and group predictors, respectively, to guarantee sparse effects both on the inter-group and within-group levels. In this paper, we apply the approximate message passing (AMP) algorithm to efficiently solve the SGL problem under Gaussian random designs. We further use the recently developed state evolution analysis of AMP to derive an asymptotically exact characterization of SGL solution. This allows us to conduct multiple fine-grained statistical analyses of SGL, through which we investigate the effects of the group information and \(\gamma \) (proportion of \(\ell _1\) penalty). With the lens of various performance measures, we show that SGL with small \(\gamma \) benefits significantly from the group information and can outperform other SGL (including LASSO) or regularized models which does not exploit the group information, in terms of the recovery rate of signal, false discovery rate and mean squared error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We note that \(\mathcal {A}\) is a sufficient but not necessary condition for the state evolution to converge. The reason that we split the analysis at \(\alpha =\mathcal {A}_{\max }\) is because, for \(\alpha > \mathcal {A}_{\max }\), the SGL estimator is 0. Besides, we note that the set \(\mathcal {A}\) only affects the state evolution. Hence when \(\alpha > \mathcal {A}_{\max }\), the calibration is still valid and the mapping between \(\alpha \) and \(\lambda \) is monotone.

References

  1. Bayati, M., Erdogdu, M.A., Montanari, A.: Estimating lasso risk and noise level. In: Advances in Neural Information Processing Systems, pp. 944–952 (2013)

    Google Scholar 

  2. Bayati, M., Lelarge, M., Montanari, A., et al.: Universality in polytope phase transitions and message passing algorithms. Ann. Appl. Probab. 25(2), 753–822 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bayati, M., Montanari, A.: The dynamics of message passing on dense graphs, with applications to compressed sensing. IEEE Trans. Inf. Theory 57(2), 764–785 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bayati, M., Montanari, A.: The lasso risk for gaussian matrices. IEEE Trans. Inf. Theory 58(4), 1997–2017 (2011)

    Article  MathSciNet  Google Scholar 

  5. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  6. Berthier, R., Montanari, A., Nguyen, P.M.: State evolution for approximate message passing with non-separable functions. arXiv preprint arXiv:1708.03950 (2017)

  7. Bu, Z., Klusowski, J., Rush, C., Su, W.: Algorithmic analysis and statistical estimation of slope via approximate message passing. arXiv preprint arXiv:1907.07502 (2019)

  8. Celentano, M.: Approximate separability of symmetrically penalized least squares in high dimensions: characterization and consequences. arXiv preprint arXiv:1906.10319 (2019)

  9. Celentano, M., Montanari, A.: Fundamental barriers to high-dimensional regression with convex penalties. arXiv preprint arXiv:1903.10603 (2019)

  10. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 57(11), 1413–1457 (2004)

    Article  MathSciNet  Google Scholar 

  11. Donoho, D.L., Maleki, A., Montanari, A.: Message-passing algorithms for compressed sensing. Proc. Natl. Acad. Sci. 106(45), 18914–18919 (2009)

    Article  Google Scholar 

  12. Donoho, D.L., Maleki, A., Montanari, A.: Message passing algorithms for compressed sensing: I. motivation and construction. In: 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo), pp. 1–5. IEEE (2010)

    Google Scholar 

  13. Donoho, D.L., Maleki, A., Montanari, A.: How to design message passing algorithms for compressed sensing. preprint (2011)

    Google Scholar 

  14. Donoho, D.L., Maleki, A., Montanari, A.: The noise-sensitivity phase transition in compressed sensing. IEEE Trans. Inf. Theory 57(10), 6920–6941 (2011)

    Article  MathSciNet  Google Scholar 

  15. Foygel, R., Drton, M.: Exact block-wise optimization in group lasso and sparse group lasso for linear regression. arXiv preprint arXiv:1010.3320 (2010)

  16. Friedman, J., Hastie, T., Tibshirani, R.: A note on the group lasso and a sparse group lasso. arXiv preprint arXiv:1001.0736 (2010)

  17. Guo, C., Davies, M.E.: Near optimal compressed sensing without priors: parametric sure approximate message passing. IEEE Trans. Signal Process. 63(8), 2130–2141 (2015)

    Article  MathSciNet  Google Scholar 

  18. Hu, H., Lu, Y.M.: Asymptotics and optimal designs of slope for sparse linear regression. In: 2019 IEEE International Symposium on Information Theory (ISIT), pp. 375–379. IEEE (2019)

    Google Scholar 

  19. Ida, Y., Fujiwara, Y., Kashima, H.: Fast sparse group lasso (2019)

    Google Scholar 

  20. Doob, J.L.: Stochastic Processes, vol. 101. Wiley, New York (1953)

    Google Scholar 

  21. Kohavi, R.: Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid. KDD 96, 202–207 (1996)

    Google Scholar 

  22. Krzakala, F., Mézard, M., Sausset, F., Sun, Y., Zdeborová, L.: Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices. J. Stat. Mech: Theory Exp. 2012(08), P08009 (2012)

    Article  Google Scholar 

  23. Manoel, A., Krzakala, F., Varoquaux, G., Thirion, B., Zdeborová, L.: Approximate message-passing for convex optimization with non-separable penalties. arXiv preprint arXiv:1809.06304 (2018)

  24. Meier, L., Van De Geer, S., Bühlmann, P.: The group lasso for logistic regression. J. Roy. Stat. Soc. Ser. B (Statistical Methodology) 70(1), 53–71 (2008)

    Article  MathSciNet  Google Scholar 

  25. Montanari, A., Eldar, Y., Kutyniok, G.: Graphical models concepts in compressed sensing. Compressed Sensing: Theory and Applications, pp. 394–438 (2012)

    Google Scholar 

  26. Mousavi, A., Maleki, A., Baraniuk, R.G., et al.: Consistent parameter estimation for lasso and approximate message passing. Ann. Stat. 46(1), 119–148 (2018)

    Article  MathSciNet  Google Scholar 

  27. Parikh, N., Boyd, S., et al.: Proximal algorithms. Foundations Trends Optimization 1(3), 127–239 (2014)

    Google Scholar 

  28. Puig, A.T., Wiesel, A., Hero, A.O.: A multidimensional shrinkage-thresholding operator. In: 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pp. 113–116. IEEE (2009)

    Google Scholar 

  29. Rangan, S.: Generalized approximate message passing for estimation with random linear mixing. In: 2011 IEEE International Symposium on Information Theory Proceedings, pp. 2168–2172. IEEE (2011)

    Google Scholar 

  30. Rangan, S., Schniter, P., Fletcher, A.K.: Vector approximate message passing. IEEE Trans. Inf. Theory 65, 6664–6684 (2019)

    Google Scholar 

  31. Rangana, S., Schniterb, P., Fletcherc, A.K., Sarkar, S.: On the convergence of approximate message passing with arbitrary matrices. IEEE Trans. Inf. Theory 65(9), 5339–5351 (2019)

    Article  MathSciNet  Google Scholar 

  32. Shi, H.J.M., Tu, S., Xu, Y., Yin, W.: A primer on coordinate descent algorithms. arXiv preprint arXiv:1610.00040 (2016)

  33. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso. J. Comput. Graph. Stat. 22(2), 231–245 (2013)

    Article  MathSciNet  Google Scholar 

  34. Su, W., Bogdan, M., Candes, E., et al.: False discoveries occur early on the lasso path. Ann. Stat. 45(5), 2133–2150 (2017)

    Article  MathSciNet  Google Scholar 

  35. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Vila, J., Schniter, P.: Expectation-maximization bernoulli-gaussian approximate message passing. In: 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 799–803. IEEE (2011)

    Google Scholar 

  37. Vila, J., Schniter, P., Rangan, S., Krzakala, F., Zdeborová, L.: Adaptive damping and mean removal for the generalized approximate message passing algorithm. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2021–2025. IEEE (2015)

    Google Scholar 

  38. Vila, J.P., Schniter, P.: Expectation-maximization gaussian-mixture approximate message passing. IEEE Trans. Signal Process. 61(19), 4658–4672 (2013)

    Article  MathSciNet  Google Scholar 

  39. Yang, Y., Zou, H.: A fast unified algorithm for solving group-lasso penalize learning problems. Stat. Comput. 25(6), 1129–1141 (2014). https://doi.org/10.1007/s11222-014-9498-5

    Article  MathSciNet  MATH  Google Scholar 

  40. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc. Ser. B (Statistical Methodology) 68(1), 49–67 (2006)

    Article  MathSciNet  Google Scholar 

  41. Zou, H.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)

    Article  MathSciNet  Google Scholar 

  42. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. Ser. B (statistical methodology) 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 752 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, K., Bu, Z., Xu, S. (2021). Asymptotic Statistical Analysis of Sparse Group LASSO via Approximate Message Passing. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12977. Springer, Cham. https://doi.org/10.1007/978-3-030-86523-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86523-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86522-1

  • Online ISBN: 978-3-030-86523-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics