Skip to main content

Inter-domain Multi-relational Link Prediction

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2021)

Abstract

Multi-relational graph is a ubiquitous and important data structure, allowing flexible representation of multiple types of interactions and relations between entities. Similar to other graph-structured data, link prediction is one of the most important tasks on multi-relational graphs and is often used for knowledge completion. When related graphs coexist, it is of great benefit to build a larger graph via integrating the smaller ones. The integration requires predicting hidden relational connections between entities belonged to different graphs (inter-domain link prediction). However, this poses a real challenge to existing methods that are exclusively designed for link prediction between entities of the same graph only (intra-domain link prediction). In this study, we propose a new approach to tackle the inter-domain link prediction problem by softly aligning the entity distributions between different domains with optimal transport and maximum mean discrepancy regularizers. Experiments on real-world datasets show that optimal transport regularizer is beneficial and considerably improves the performance of baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code is available at https://github.com/phucdoitoan/inter-domain_lp.

References

  1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pp. 2623–2631 (2019)

    Google Scholar 

  2. Baktashmotlagh, M., Harandi, M.T., Salzmann, M.: Distribution-matching embedding for visual domain adaptation. J. Mach. Learn. Res. 17, 108:1–108:30 (2016)

    Google Scholar 

  3. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. Adv. Neural Inform. Process. Syst. 26, 2787–2795 (2013)

    Google Scholar 

  4. Cao, Y., Liu, Z., Li, C., Liu, Z., Li, J., Chua, T.: Multi-channel graph neural network for entity alignment. In: Proceedings of the 57th Conference of the Association for Computational Linguistics (ACL), pp. 1452–1461 (2019)

    Google Scholar 

  5. Cao, Y., Wang, X., He, X., Hu, Z., Chua, T.: Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences. In: Proceedings of the World Wide Web Conference (WWW), pp. 151–161 (2019)

    Google Scholar 

  6. Cao, Y., Long, M., Wang, J.: Unsupervised domain adaptation with distribution matching machines. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), pp. 2795–2802 (2018)

    Google Scholar 

  7. Chen, L., Gan, Z., Cheng, Y., Li, L., Carin, L., Liu, J.: Graph optimal transport for cross-domain alignment. In: Proceedings of the 37th International Conference on Machine Learning (ICML), pp. 1542–1553 (2020)

    Google Scholar 

  8. Chen, M., Tian, Y., Yang, M., Zaniolo, C.: Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1511–1517. ijcai.org (2017)

    Google Scholar 

  9. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. Adv. Neural Inform. Process. Syst. 26, 2292–2300 (2013)

    Google Scholar 

  10. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI), pp. 1811–1818 (2018)

    Google Scholar 

  11. Fey, M., Lenssen, J.E., Morris, C., Masci, J., Kriege, N.M.: Deep graph matching consensus. In: Proceedings of th 8th International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  12. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.J.: A kernel method for the two-sample-problem. Adv. Neural Inform. Process. Syst. 19, 513–520 (2006)

    MATH  Google Scholar 

  13. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.J.: A kernel approach to comparing distributions. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI), pp. 1637–1641 (2007)

    Google Scholar 

  14. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (ACL), pp. 687–696 (2015)

    Google Scholar 

  15. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. Adv. Neural Inform. Process. Syst. 31, 4289–4300 (2018)

    Google Scholar 

  16. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI), pp. 2181–2187 (2015)

    Google Scholar 

  17. Mao, X., Wang, W., Xu, H., Lan, M., Wu, Y.: MRAEA: an efficient and robust entity alignment approach for cross-lingual knowledge graph. In: Proceedings of the 13th ACM International Conference on Web Search and Data Mining (WSDM), pp. 420–428 (2020)

    Google Scholar 

  18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of the First International Conference on Learning Representations (ICLR) (2013)

    Google Scholar 

  19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Adv. Neural Inform. Process. Syst. 26, 3111–3119 (2013)

    Google Scholar 

  20. Nguyen, D.Q.: An overview of embedding models of entities and relationships for knowledge base completion. CoRR abs/1703.08098 (2017)

    Google Scholar 

  21. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

    Google Scholar 

  22. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on Machine Learning (ICML), pp. 809–816 (2011)

    Google Scholar 

  23. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach. Learn. 11(5–6), 355–607 (2019)

    Article  Google Scholar 

  24. Peyré, G., Cuturi, M., Solomon, J.: Gromov-Wasserstein averaging of kernel and distance matrices. In: Proceedings of the 33nd International Conference on Machine Learning (ICML), pp. 2664–2672 (2016)

    Google Scholar 

  25. Phuc, L.H., Takeuchi, K., Yamada, M., Kashima, H.: Simultaneous link prediction on unaligned networks using graph embedding and optimal transport. In: Proceedings of the Seventh IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 245–254 (2020)

    Google Scholar 

  26. Sansone, E., Ali, H.T., Sun, J.: Coulomb autoencoders. In: ECAI 2020–24th European Conference on Artificial Intelligence, vol. 325, pp. 1443–1450 (2020)

    Google Scholar 

  27. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. Adv. Neural Inform. Process. Syst. 26, 926–934 (2013)

    Google Scholar 

  28. Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference (ISWC), pp. 628–644 (2017)

    Google Scholar 

  29. Sun, Z., Hu, W., Zhang, Q., Qu, Y.: Bootstrapping entity alignment with knowledge graph embedding. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI), pp. 4396–4402 (2018)

    Google Scholar 

  30. Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text for joint embedding of text and knowledge bases. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1499–1509 (2015)

    Google Scholar 

  31. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of the 33rd International Conference on Machine Learning (ICML), pp. 2071–2080 (2016)

    Google Scholar 

  32. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: Maximizing for domain invariance. CoRR abs/1412.3474 (2014)

    Google Scholar 

  33. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI), pp. 1112–1119 (2014)

    Google Scholar 

  34. Xu, H., Luo, D., Zha, H., Carin, L.: Gromov-Wasserstein learning for graph matching and node embedding. In: Proceedings of the 36th International Conference on Machine Learning (ICML), pp. 6932–6941 (2019)

    Google Scholar 

  35. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the Third International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the anonymous reviewers for their insightful suggestions and constructive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luu Huu Phuc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phuc, L.H. et al. (2021). Inter-domain Multi-relational Link Prediction. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12976. Springer, Cham. https://doi.org/10.1007/978-3-030-86520-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86520-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86519-1

  • Online ISBN: 978-3-030-86520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics