Skip to main content

Monte Carlo Search Algorithms for Network Traffic Engineering

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track (ECML PKDD 2021)

Abstract

The aim of Traffic Engineering is to provide routing configurations in networks such that the used resources are minimized while maintaining a high level of quality of service (QoS). Among the optimization problems arising in this domain, we address in this paper the one related to setting weights in networks that are based on shortest path routing protocols (OSPF, IS-IS). Finding weights that induce efficient routing paths (e.g. that minimize the maximum congested link) is a computationally hard problem.

We propose to use Monte Carlo Search for the first time for this problem. More specifically we apply Nested Rollout Policy Adaptation (NRPA). We also extend NRPA with the force_exploration algorithm to improve the results. In comparison to other algorithms NRPA scales better with the size of the instance and can be easily extended to take into account additional constraints (cost utilization, delay, ...) or linear/non-linear optimization criteria. For difficult instances the optimum is not known but a lower bound can be computed. NRPA gives results close to the lower bound on a standard dataset of telecommunication networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altin, A., Fortz, B., Thorup, M., Ümit, H.: Intra-domain traffic engineering with shortest path routing protocols. Ann. Oper. Res. 204(1), 65–95 (2013). https://doi.org/10.1007/s10479-012-1270-7

    Article  MathSciNet  MATH  Google Scholar 

  2. Altin, A., Fortz, B., Ümit, H.: Oblivious OSPF routing with weight optimization under polyhedral demand uncertainty. Networks 60(2), 132–139 (2012)

    Article  MathSciNet  Google Scholar 

  3. Benhamiche, A., Chopin, M.: Toward scalable algorithms for the unsplittable shortest path routing problem. Research report, Orange Labs (2020)

    Google Scholar 

  4. Bley, A.: Approximability of unsplittable shortest path routing problems. Networks 54(1), 23–46 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bley, A.: An integer programming algorithm for routing optimization in IP networks. Algorithmica 60(1), 21–45 (2011)

    Article  MathSciNet  Google Scholar 

  6. Bley, A., Fortz, B., Gourdin, É., Holmberg, K., Klopfenstein, O., Pióro, M., Tomaszewski, A., Ümit, H.: Optimization of OSPF routing in IP networks. In: Koster, A., Muñoz, X. (eds.) Graphs and Algorithms in Communication Networks: Studies in Broadband, Optical, Wireless and Ad Hoc Networks. An EATCS Series, pp. 199–240. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02250-0_8

    Chapter  MATH  Google Scholar 

  7. Bouzy, B.: Monte-Carlo fork search for cooperative path-finding. In: Cazenave, T., Winands, M.H.M., Iida, H. (eds.) CGW 2013. CCIS, vol. 408, pp. 1–15. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05428-5_1

    Chapter  Google Scholar 

  8. Buriol, L.S., Resende, M.G.C., Ribeiro, C.C., Thorup, M.: A hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS routing. Networks 46(1), 36–56 (2005)

    Article  MathSciNet  Google Scholar 

  9. Cazenave, T.: Nested Monte-Carlo search. In: Boutilier, C. (ed.) IJCAI, pp. 456–461 (2009)

    Google Scholar 

  10. Cazenave, T., Fournier, T.: Monte Carlo inverse folding. In: Monte Search at IJCAI (2020)

    Google Scholar 

  11. Cazenave, T., Lucas, J., Triboulet, T., Kim, H.: Policy adaptation for vehicle routing. Ai Commun. (2021)

    Google Scholar 

  12. Cazenave, T., Negrevergne, B., Sikora, F.: Monte Carlo graph coloring. In: Monte Search at IJCAI (2020)

    Google Scholar 

  13. Cazenave, T., Saffidine, A., Schofield, M.J., Thielscher, M.: Nested Monte Carlo search for two-player games. In: AAAI, pp. 687–693 (2016)

    Google Scholar 

  14. Cazenave, T., Sevestre, J.B., Toulemont, M.: Stabilized nested rollout policy adaptation. In: Monte Search at IJCAI (2020)

    Google Scholar 

  15. Cazenave, T., Teytaud, F.: Application of the nested rollout policy adaptation algorithm to the traveling salesman problem with time windows. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 42–54. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_4

    Chapter  Google Scholar 

  16. Edelkamp, S., Gath, M., Cazenave, T., Teytaud, F.: Algorithm and knowledge engineering for the TSPTW problem. In: 2013 IEEE Symposium on Computational Intelligence in Scheduling (SCIS), pp. 44–51. IEEE (2013)

    Google Scholar 

  17. Edelkamp, S., Gath, M., Greulich, C., Humann, M., Herzog, O., Lawo, M.: Monte-Carlo tree search for logistics. In: Clausen, U., Friedrich, H., Thaller, C., Geiger, C. (eds.) Commercial Transport. LNL, pp. 427–440. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21266-1_28

    Chapter  Google Scholar 

  18. Edelkamp, S., Gath, M., Rohde, M.: Monte-Carlo tree search for 3D packing with object orientation. In: Lutz, C., Thielscher, M. (eds.) KI 2014. LNCS (LNAI), vol. 8736, pp. 285–296. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11206-0_28

    Chapter  Google Scholar 

  19. Edelkamp, S., Greulich, C.: Solving physical traveling salesman problems with policy adaptation. In: 2014 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE (2014)

    Google Scholar 

  20. Edelkamp, S., Tang, Z.: Monte-Carlo tree search for the multiple sequence alignment problem. In: SOCS 2015, pp. 9–17. AAAI Press (2015)

    Google Scholar 

  21. Ericsson, M., Resende, M.G.C., Pardalos, P.M.: A genetic algorithm for the weight setting problem in OSPF routing. J. Comb. Optim. 6(3), 299–333 (2002). https://doi.org/10.1023/A:1014852026591

    Article  MathSciNet  MATH  Google Scholar 

  22. Fortz, B.: Applications of meta-heuristics to traffic engineering in IP networks. Int. Trans. Oper. Res. 18(2), 131–147 (2011)

    Article  MathSciNet  Google Scholar 

  23. Fortz, B., Thorup, M.: Increasing internet capacity using local search. Comput. Optim. Appl. 29, 13–48 (2000). https://doi.org/10.1023/B:COAP.0000039487.35027.02

    Article  MathSciNet  MATH  Google Scholar 

  24. Fortz, B., Thorup, M.: Robust optimization of OSPF/IS-IS weights. In: INOC, pp. 225–230 (2003)

    Google Scholar 

  25. Kinny, D.: A new approach to the snake-in-the-box problem. In: ECAI 2012, pp. 462–467. IOS Press (2012)

    Google Scholar 

  26. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29

    Chapter  Google Scholar 

  27. Leduc, G., et al.: An open source traffic engineering toolbox. Comput. Commun. 29(5), 593–610 (2006)

    Article  Google Scholar 

  28. Méhat, J., Cazenave, T.: Combining UCT and Nested Monte Carlo search for single-player general game playing. IEEE TCIAIG 2(4), 271–277 (2010)

    Google Scholar 

  29. Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0-survivable network design library. Networks 55(3), 276–286 (2010)

    Google Scholar 

  30. Poulding, S.M., Feldt, R.: Heuristic model checking using a Monte-Carlo tree search algorithm. In: GECCO, pp. 1359–1366 (2015)

    Google Scholar 

  31. Rimmel, A., Teytaud, F., Cazenave, T.: Optimization of the Nested Monte-Carlo algorithm on the traveling salesman problem with time windows. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 501–510. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20520-0_51

    Chapter  Google Scholar 

  32. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo Tree search. In: IJCAI, pp. 649–654 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Dang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dang, C., Bazgan, C., Cazenave, T., Chopin, M., Wuillemin, PH. (2021). Monte Carlo Search Algorithms for Network Traffic Engineering. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12978. Springer, Cham. https://doi.org/10.1007/978-3-030-86514-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86514-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86513-9

  • Online ISBN: 978-3-030-86514-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics