Skip to main content

The Constrained Knapsack Problem: Models and the Polyhedral-Ellipsoid Method

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research: Recent Trends (MOTOR 2021)

Abstract

The paper focuses on studying a class KCFG of a Constrained Knapsack Problem (CKP), where conflict and forcing constraints are present. Four KCFG-formulations as quadratically constrained programs are introduced that utilize geometric properties of a feasible domain such as inscribability in an ellipsoid and coverability by two parallel planes. The new models are applied in deriving new upper bounds that can be effectively found by semi-definite programming and the r-algorithm. Another introduced application area is the Polyhedral-ellipsoid method (PEM) for linear optimization on two-level sets in a polytope \(P'\) (\(P'\)-2LSs) illustrated by a numerical example. Besides KCFG, the new modelling and solution approaches can be applied to any CKP reducible to a polynomial number of CKPs on \(P'\)-2LSs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bettinelli, A., Cacchiani, V., Malaguti, E.: A branch-and-bound algorithm for the knapsack problem with conflict graph. INFORMS J. Comput. 29, 457–473 (2017). https://doi.org/10.1287/ijoc.2016.0742

    Article  MathSciNet  MATH  Google Scholar 

  2. Birkhoff, G.: Tres observaciones sobre el algebra lineal. Rev. Univ. Nac. Tucumán 5(A), 147–151 (1946)

    Google Scholar 

  3. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35, 268–308 (2003). https://doi.org/10.1145/937503.937505

  4. Bohn, A., Faenza, Y., Fiorini, S., Fisikopoulos, V., Macchia, M., Pashkovich, K.: Enumeration of 2-level polytopes. Math. Program. Comput. 11(1), 173–210 (2018). https://doi.org/10.1007/s12532-018-0145-6

  5. Chvatal, V.: On certain polytopes associated with graphs. J. Comb. Theor. Ser. B. 18, 138–154 (1975). https://doi.org/10.1016/0095-8956(75)900416

  6. Coniglio, S., Furini, F., San Segundo, P.: A new combinatorial branch-and-bound algorithm for the knapsack problem with conflicts. Eur. J. Oper. Res. 289, 435–455 (2021). https://doi.org/10.1016/j.ejor.2020.07.023

  7. Dahl, J.: Convex optimization in signal processing and communications (2003)

    Google Scholar 

  8. Elhedhli, S., Li, L., Gzara, M., Naoum-Sawaya, J.: A branch-and-price algorithm for the bin packing problem with conflicts. INFORMS J. Comput. 23, 404–415 (2010). https://doi.org/10.1287/ijoc.1100.0406

  9. Fiorini, S., Macchia, M., Pashkovich, K.: Bounds on the number of 2-level polytopes, cones, and configurations. Discrete Comput. Geom. 65(3), 587–600 (2021). https://doi.org/10.1007/s00454-020-00181-4

    Article  MathSciNet  MATH  Google Scholar 

  10. Grande, F., Sanyal, R.: Theta rank, levelness, and matroid minors. J. Comb. Theor. Ser. B. 123, 1–31 (2017). https://doi.org/10.1016/j.jctb.2016.11.002

  11. Gurski, F., Rehs, C.: Solutions for the knapsack problem with conflict and forcing graphs of bounded clique-width. Math. Methods Oper. Res. 89(3), 411–432 (2019). https://doi.org/10.1007/s00186-019-00664-y

    Article  MathSciNet  MATH  Google Scholar 

  12. Hanner, O.: Intersections of translates of convex bodies. Math. Scand. 4, 65–87 (1956). https://doi.org/10.7146/math.scand.a-10456

  13. Hifi, M., Saleh, S., Wu, L.: A fast large neighborhood search for disjunctively constrained knapsack problems. In: Fouilhoux, P., Gouveia, L.E.N., Mahjoub, A.R., Paschos, V.T. (eds.) ISCO 2014. LNCS, vol. 8596, pp. 396–407. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09174-7_34

    Chapter  Google Scholar 

  14. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  15. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2010)

    MATH  Google Scholar 

  16. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, Chichester (1990)

    MATH  Google Scholar 

  17. Klerk, E. de: Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. Springer, Dordrecht (2002) https://doi.org/10.1007/b105286

  18. Lazarev, A., Salnikov, A., Baranov, A.: Graphical algorithm for the knapsack problems. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 459–466. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23178-0_41

    Chapter  Google Scholar 

  19. Pferschy, U., Schauer, J.: Approximation of knapsack problems with conflict and forcing graphs. J. Comb. Optim. 33(4), 1300–1323 (2016). https://doi.org/10.1007/s10878-016-0035-7

    Article  MathSciNet  MATH  Google Scholar 

  20. Pichugina, O., Yakovlev, S.: Continuous approaches to the unconstrained binary quadratic problems. In: Bélair, J., Frigaard, I.A., Kunze, H., Makarov, R., Melnik, R., Spiteri, R.J. (eds.) Mathematical and Computational Approaches in Advancing Modern Science and Engineering, pp. 689–700. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30379-6_62

    Chapter  MATH  Google Scholar 

  21. Pichugina, O., Yakovlev, S.: Euclidean combinatorial configurations: typology and applications. In: 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON 2019) Conference Proceedings, pp. 1065–1070. Lviv, Ukraine (2019). https://doi.org/10.1109/UKRCON.2019.8879912

  22. Pichugina, O., Yakovlev, S.: Euclidean combinatorial configurations: continuous representations and convex extensions. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. (eds.) Lecture Notes in Computational Intelligence and Decision Making. pp. 65–80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26474-1_5

  23. Pogorelov, A.V.: Extrinsic Geometry of Convex Surfaces. American Mathematical Society, Providence (1973)

    Google Scholar 

  24. Stanley, R.P.: Two poset polytopes. Discrete Comput Geom. 1, 9–23 (1986). https://doi.org/10.1007/BF02187680

  25. Shor, N.Z.: Nondifferentiable optimization and polynomial problems. Kluwer Academic Publishers, Dordrecht (1998)

    Book  Google Scholar 

  26. Stetsyuk, P.I.: Dual bounds in quadratic extremal problems. Eureka, Chisinau (2018)

    Google Scholar 

  27. Yakovlev, S.: Convex extensions in combinatorial optimization and their applications. In: Butenko, S., Pardalos, P.M., Shylo, V. (eds.) Optimization Methods and Applications. SOIA, vol. 130, pp. 567–584. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68640-0_27

    Chapter  MATH  Google Scholar 

  28. Yakovlev, S., Pichugina, O.: On constrained optimization of polynomials on permutation set. In: Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), pp. 570–580. CEUR Vol-2353 urn:nbn:de:0074–2353-0, Zaporizhzhia, Ukraine (2019)

    Google Scholar 

  29. Yakovlev, S., Pichugina, O., Koliechkina, L.: A lower bound for optimization of arbitrary function on permutations. In: Babichev, S., Lytvynenko, V., Wójcik, W., Vyshemyrskaya, S. (eds.) ISDMCI 2020. AISC, vol. 1246, pp. 195–212. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-54215-3_13

    Chapter  Google Scholar 

  30. Yamada, T., Kataoka, S., Watanabe, K.: Heuristic and exact algorithms for the disjunctively constrained knapsack problem. Inf. Process. Soc. Jpn. J. 8, 191–205 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Pichugina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pichugina, O., Koliechkina, L. (2021). The Constrained Knapsack Problem: Models and the Polyhedral-Ellipsoid Method. In: Strekalovsky, A., Kochetov, Y., Gruzdeva, T., Orlov, A. (eds) Mathematical Optimization Theory and Operations Research: Recent Trends. MOTOR 2021. Communications in Computer and Information Science, vol 1476. Springer, Cham. https://doi.org/10.1007/978-3-030-86433-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86433-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86432-3

  • Online ISBN: 978-3-030-86433-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics